湖北省武漢市蔡甸區(qū)求新聯(lián)盟2024屆中考數(shù)學(xué)模擬試題含解析_第1頁
湖北省武漢市蔡甸區(qū)求新聯(lián)盟2024屆中考數(shù)學(xué)模擬試題含解析_第2頁
湖北省武漢市蔡甸區(qū)求新聯(lián)盟2024屆中考數(shù)學(xué)模擬試題含解析_第3頁
湖北省武漢市蔡甸區(qū)求新聯(lián)盟2024屆中考數(shù)學(xué)模擬試題含解析_第4頁
湖北省武漢市蔡甸區(qū)求新聯(lián)盟2024屆中考數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省武漢市蔡甸區(qū)求新聯(lián)盟2024屆中考數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π2.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.3.下列運(yùn)算正確的是()A.a(chǎn)6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=14.如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個(gè)數(shù)為()A.4 B.3 C.2 D.15.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是()A.B.C.D.6.下列事件中必然發(fā)生的事件是()A.一個(gè)圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時(shí)乘以一個(gè)數(shù),結(jié)果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)7.下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.8.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(﹣3,﹣4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過菱形OABC中心E點(diǎn),則k的值為()A.6 B.8 C.10 D.129.某校航模小分隊(duì)年齡情況如表所示,則這12名隊(duì)員年齡的眾數(shù)、中位數(shù)分別是()年齡(歲)1213141516人數(shù)12252A.2,14歲 B.2,15歲 C.19歲,20歲 D.15歲,15歲10.如圖,已知AB是⊙O的直徑,弦CD⊥AB于E,連接BC、BD、AC,下列結(jié)論中不一定正確的是()A.∠ACB=90° B.OE=BE C.BD=BC D.11.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是()A. B. C. D.12.?dāng)?shù)軸上有A,B,C,D四個(gè)點(diǎn),其中絕對(duì)值大于2的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知m、n是一元二次方程x2+4x﹣1=0的兩實(shí)數(shù)根,則=_____.14.已知點(diǎn)P(3,1)關(guān)于y軸的對(duì)稱點(diǎn)Q的坐標(biāo)是(a+b,﹣1﹣b),則ab的值為_____.15.如圖,在邊長為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),EC=2,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,則PC的長為_____.16.若一個(gè)多邊形的內(nèi)角和是900o,則這個(gè)多邊形是邊形.17.拋物線y=x2﹣2x+3的對(duì)稱軸是直線_____.18.已知x(x+1)=x+1,則x=________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,求海警船到大事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)20.(6分)數(shù)學(xué)興趣小組為了研究中小學(xué)男生身高y(cm)和年齡x(歲)的關(guān)系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計(jì)的中小學(xué)男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標(biāo)系中描出了表中數(shù)據(jù)對(duì)應(yīng)的點(diǎn),并發(fā)現(xiàn)前5個(gè)點(diǎn)大致位于直線AB上,后7個(gè)點(diǎn)大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學(xué)生的平均身高從歲開始增加特別迅速.(2)求直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式.(3)直接寫出直線CD所對(duì)應(yīng)的函數(shù)表達(dá)式,假設(shè)17歲后該市男生身高增長速度大致符合直線CD所對(duì)應(yīng)的函數(shù)關(guān)系,請(qǐng)你預(yù)測該市18歲男生年齡組的平均身高大約是多少?21.(6分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)D是y軸負(fù)半軸上一點(diǎn),直線BD與拋物線y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線BE上方,將點(diǎn)F沿平行于x軸的直線向右平移m個(gè)單位長度后恰好落在直線BE上的點(diǎn)G處.(1)求拋物線y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點(diǎn)F作x軸的垂線FP,交直線BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,說明理由.22.(8分)如圖1,正方形ABCD的邊長為8,動(dòng)點(diǎn)E從點(diǎn)D出發(fā),在線段DC上運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā),以相同的速度沿射線AB方向運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到終點(diǎn)C時(shí),點(diǎn)F也停止運(yùn)動(dòng),連接AE交對(duì)角線BD于點(diǎn)N,連接EF交BC于點(diǎn)M,連接AM.(參考數(shù)據(jù):sin15°=,cos15°=,tan15°=2﹣)(1)在點(diǎn)E、F運(yùn)動(dòng)過程中,判斷EF與BD的位置關(guān)系,并說明理由;(2)在點(diǎn)E、F運(yùn)動(dòng)過程中,①判斷AE與AM的數(shù)量關(guān)系,并說明理由;②△AEM能為等邊三角形嗎?若能,求出DE的長度;若不能,請(qǐng)說明理由;(3)如圖2,連接NF,在點(diǎn)E、F運(yùn)動(dòng)過程中,△ANF的面積是否變化,若不變,求出它的面積;若變化,請(qǐng)說明理由.23.(8分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.24.(10分)解不等式組并寫出它的所有整數(shù)解.25.(10分)某商場以每件280元的價(jià)格購進(jìn)一批商品,當(dāng)每件商品售價(jià)為360元時(shí),每月可售出60件,為了擴(kuò)大銷售,商場決定采取適當(dāng)降價(jià)的方式促銷,經(jīng)調(diào)查發(fā)現(xiàn),如果每件商品降價(jià)1元,那么商場每月就可以多售出5件.降價(jià)前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達(dá)到7200元,且更有利于減少庫存,則每件商品應(yīng)降價(jià)多少元?26.(12分)如圖,圖①是某電腦液晶顯示器的側(cè)面圖,顯示屏AO可以繞點(diǎn)O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(shí)(如圖②),人觀看屏幕最舒適.此時(shí)測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結(jié)果精確到0.1cm)27.(12分)如圖,已知點(diǎn)A(1,a)是反比例函數(shù)y1=的圖象上一點(diǎn),直線y2=﹣與反比例函數(shù)y1=的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數(shù)的解析式;(Ⅱ)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時(shí)x的取值范圍;(Ⅲ)動(dòng)點(diǎn)P(x,0)在x軸的正半軸上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差達(dá)到最大時(shí),求點(diǎn)P的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

由切線的性質(zhì)定理得出∠OAB=90°,進(jìn)而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計(jì)算,解題的關(guān)鍵是先求出角度再用弧長公式進(jìn)行計(jì)算.2、B【解析】

如圖:過點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,

NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.

∵四邊形ABCD是菱形,AB=4,∠DAB=60°,

∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB

∴∠HDE=∠DAB=60°,

∵點(diǎn)E是CD中點(diǎn)

∴DE=CD=1

在Rt△DEH中,DE=1,∠HDE=60°

∴DH=1,HE=

∴AH=AD+DH=5

在Rt△AHE中,AE==1

∴AN=NE=,AE⊥GF,AF=EF

∵CD=BC,∠DCB=60°

∴△BCD是等邊三角形,且E是CD中點(diǎn)

∴BE⊥CD,

∵BC=4,EC=1

∴BE=1

∵CD∥AB

∴∠ABE=∠BEC=90°

在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.

∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,

∴sin∠EFG=sin∠AFG=,故選B.【點(diǎn)睛】本題考查了折疊問題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長度是本題的關(guān)鍵.3、B【解析】

A、根據(jù)同底數(shù)冪的除法法則計(jì)算;

B、根據(jù)同底數(shù)冪的乘法法則計(jì)算;

C、根據(jù)積的乘方法則進(jìn)行計(jì)算;

D、根據(jù)合并同類項(xiàng)法則進(jìn)行計(jì)算.【詳解】解:A、a6÷a3=a3,故原題錯(cuò)誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯(cuò)誤;D、2x2﹣x2=x2,故原題錯(cuò)誤;故選B.【點(diǎn)睛】考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,積的乘方,熟記它們的運(yùn)算法則是解題的關(guān)鍵.4、B【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;綜上所述,正確的結(jié)論有①③⑤,共3個(gè),故選B.考點(diǎn):四邊形綜合題.5、B【解析】解:過A點(diǎn)作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當(dāng)0≤x≤2時(shí),如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當(dāng)2<x≤4時(shí),如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-6、C【解析】

直接利用隨機(jī)事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個(gè)圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項(xiàng)錯(cuò)誤;B、不等式的兩邊同時(shí)乘以一個(gè)數(shù),結(jié)果仍是不等式,是隨機(jī)事件,故此選項(xiàng)錯(cuò)誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項(xiàng)正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機(jī)事件,故此選項(xiàng)錯(cuò)誤;故選C.【點(diǎn)睛】此題主要考查了隨機(jī)事件、必然事件、不可能事件,正確把握相關(guān)定義是解題關(guān)鍵.7、C【解析】

檢查最簡二次根式的兩個(gè)條件是否同時(shí)滿足,同時(shí)滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數(shù)含開的盡的因數(shù),故A不符合題意;B、被開方數(shù)含分母,故B不符合題意;C、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意;D、被開方數(shù)含能開得盡方的因數(shù)或因式,故D不符合題意.故選C.【點(diǎn)睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個(gè)條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.8、B【解析】

根據(jù)勾股定理得到OA==5,根據(jù)菱形的性質(zhì)得到AB=OA=5,AB∥x軸,求得B(-8,-4),得到E(-4,-2),于是得到結(jié)論.【詳解】∵點(diǎn)A的坐標(biāo)為(﹣3,﹣4),∴OA==5,∵四邊形AOCB是菱形,∴AB=OA=5,AB∥x軸,∴B(﹣8,﹣4),∵點(diǎn)E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故選B.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,菱形的性質(zhì),勾股定理,正確的識(shí)別圖形是解題的關(guān)鍵.9、D【解析】

眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不只一個(gè);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù).【詳解】解:數(shù)據(jù)1出現(xiàn)了5次,最多,故為眾數(shù)為1;按大小排列第6和第7個(gè)數(shù)均是1,所以中位數(shù)是1.故選D.【點(diǎn)睛】本題主要考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對(duì)這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng).注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求.如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).10、B【解析】

根據(jù)垂徑定理及圓周角定理進(jìn)行解答即可.【詳解】∵AB是⊙O的直徑,∴∠ACB=90°,故A正確;∵點(diǎn)E不一定是OB的中點(diǎn),∴OE與BE的關(guān)系不能確定,故B錯(cuò)誤;∵AB⊥CD,AB是⊙O的直徑,∴,∴BD=BC,故C正確;∴,故D正確.故選B.【點(diǎn)睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解答此題的關(guān)鍵.11、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.12、A【解析】

根據(jù)絕對(duì)值的含義和求法,判斷出絕對(duì)值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對(duì)值等于2的點(diǎn)是哪個(gè)點(diǎn)即可.【詳解】解:∵絕對(duì)值等于2的數(shù)是﹣2和2,∴絕對(duì)值等于2的點(diǎn)是點(diǎn)A.故選A.【點(diǎn)睛】此題主要考查了絕對(duì)值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個(gè)數(shù)絕對(duì)值相等;②絕對(duì)值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對(duì)值等于0的數(shù)有一個(gè),沒有絕對(duì)值等于負(fù)數(shù)的數(shù).③有理數(shù)的絕對(duì)值都是非負(fù)數(shù).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

先由根與系數(shù)的關(guān)系求出m?n及m+n的值,再把化為的形式代入進(jìn)行計(jì)算即可.【詳解】∵m、n是一元二次方程x2+1x﹣1=0的兩實(shí)數(shù)根,∴m+n=﹣1,m?n=﹣1,∴===1.故答案為1.【點(diǎn)睛】本題考查的是根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系為:x1+x2=﹣,x1?x2=.14、2【解析】

根據(jù)“關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)”求出ab的值即可.【詳解】∵點(diǎn)P(3,1)關(guān)于y軸的對(duì)稱點(diǎn)Q的坐標(biāo)是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點(diǎn)睛】本題考查了關(guān)于x軸,y軸對(duì)稱的點(diǎn)的坐標(biāo),解題的關(guān)鍵是熟練的掌握關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)的性質(zhì).15、【解析】

在AB上取BN=BE,連接EN,根據(jù)已知及正方形的性質(zhì)利用ASA判定△ANE≌△ECP,從而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解決問題.【詳解】在AB上取BN=BE,連接EN,作PM⊥BC于M.∵四邊形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.16、七【解析】

根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設(shè)這個(gè)多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點(diǎn)睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關(guān)鍵.17、x=1【解析】

把解析式化為頂點(diǎn)式可求得答案.【詳解】解:∵y=x2-2x+3=(x-1)2+2,∴對(duì)稱軸是直線x=1,故答案為x=1.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點(diǎn)式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對(duì)稱軸為x=h,頂點(diǎn)坐標(biāo)為(h,k).18、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、小時(shí)【解析】

過點(diǎn)C作CD⊥AB交AB延長線于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根據(jù)時(shí)間=路程÷速度即可求出海警船到大事故船C處所需的時(shí)間.【詳解】解:如圖,過點(diǎn)C作CD⊥AB交AB延長線于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C處所需的時(shí)間大約為:50÷40=(小時(shí)).考點(diǎn):解直角三角形的應(yīng)用-方向角問題20、(1)11;(2)y=3.6x+90;(3)該市18歲男生年齡組的平均身高大約是174cm左右.【解析】

(1)根據(jù)統(tǒng)計(jì)圖仔細(xì)觀察即可得出結(jié)果(2)先設(shè)函數(shù)表達(dá)式,選取兩個(gè)點(diǎn)帶入求值即可(3)先設(shè)函數(shù)表達(dá)式,選取兩個(gè)點(diǎn)帶入求值,把帶入預(yù)測即可.【詳解】解:(1)由統(tǒng)計(jì)圖可得,該市男學(xué)生的平均身高從11歲開始增加特別迅速,故答案為:11;(2)設(shè)直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式∵圖象經(jīng)過點(diǎn)則,解得.即直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式:(3)設(shè)直線CD所對(duì)應(yīng)的函數(shù)表達(dá)式為:,,得,即直線CD所對(duì)應(yīng)的函數(shù)表達(dá)式為:把代入得即該市18歲男生年齡組的平均身高大約是174cm左右.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)統(tǒng)計(jì)圖和一次函數(shù)的應(yīng)用,熟練掌握一次函數(shù)表達(dá)式的求法是解題的關(guān)鍵.21、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達(dá)式,再將E點(diǎn)坐標(biāo)代入表達(dá)式求出y的值即可;(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達(dá)式求出D點(diǎn)坐標(biāo),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),可得G點(diǎn)坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線的解析式求解可得點(diǎn)F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點(diǎn)F與點(diǎn)G的坐標(biāo),根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點(diǎn)F在x軸的左側(cè)時(shí)與右側(cè)時(shí)的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)關(guān)系列出等式化簡求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達(dá)式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點(diǎn)E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達(dá)式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點(diǎn)F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點(diǎn)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時(shí),m的最大值為4.(2)當(dāng)點(diǎn)F在x軸的左側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,0).當(dāng)點(diǎn)F在x軸的右側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,).綜上所述,點(diǎn)F的坐標(biāo)為(﹣3,0)或(﹣3,).【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.22、(1)EF∥BD,見解析;(2)①AE=AM,理由見解析;②△AEM能為等邊三角形,理由見解析;(3)△ANF的面積不變,理由見解析【解析】

(1)依據(jù)DE=BF,DE∥BF,可得到四邊形DBFE是平行四邊形,進(jìn)而得出EF∥DB;(2)依據(jù)已知條件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等邊三角形,則∠EAM=60°,依據(jù)△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即當(dāng)DE=16?8時(shí),△AEM是等邊三角形;(3)設(shè)DE=x,過點(diǎn)N作NP⊥AB,反向延長PN交CD于點(diǎn)Q,則NQ⊥CD,依據(jù)△DEN∽△BNA,即可得出PN=,根據(jù)S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面積不變.【詳解】解:(1)EF∥BD.證明:∵動(dòng)點(diǎn)E從點(diǎn)D出發(fā),在線段DC上運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā),以相同的速度沿射線AB方向運(yùn)動(dòng),∴DE=BF,又∵DE∥BF,∴四邊形DBFE是平行四邊形,∴EF∥DB;(2)①AE=AM.∵EF∥BD,∴∠F=∠ABD=45°,∴MB=BF=DE,∵正方形ABCD,∴∠ADC=∠ABC=90°,AB=AD,∴△ADE≌△ABM,∴AE=AM;②△AEM能為等邊三角形.若△AEM是等邊三角形,則∠EAM=60°,∵△ADE≌△ABM,∴∠DAE=∠BAM=15°,∵tan∠DAE=,AD=8,∴2﹣=,∴DE=16﹣8,即當(dāng)DE=16﹣8時(shí),△AEM是等邊三角形;(3)△ANF的面積不變.設(shè)DE=x,過點(diǎn)N作NP⊥AB,反向延長PN交CD于點(diǎn)Q,則NQ⊥CD,∵CD∥AB,∴△DEN∽△BNA,∴=,∴,∴PN=,∴S△ANF=AF×PN=×(x+8)×=32,即△ANF的面積不變.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了平行四邊形的判定與性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形以及相似三角形的判定與性質(zhì)的綜合運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造相似三角形,利用全等三角形的對(duì)應(yīng)邊相等,相似三角形的對(duì)應(yīng)邊成比例得出結(jié)論.23、(1);(2);(3).【解析】

(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據(jù)CD=3DE,構(gòu)建方程即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論