山東省棗莊市薛城區(qū)臨城重點名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第1頁
山東省棗莊市薛城區(qū)臨城重點名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第2頁
山東省棗莊市薛城區(qū)臨城重點名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第3頁
山東省棗莊市薛城區(qū)臨城重點名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第4頁
山東省棗莊市薛城區(qū)臨城重點名校2021-2022學(xué)年中考三模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省棗莊市薛城區(qū)臨城重點名校2021-2022學(xué)年中考三模數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若,則x-y的正確結(jié)果是()A.-1 B.1 C.-5 D.52.關(guān)于x的方程x2﹣3x+k=0的一個根是2,則常數(shù)k的值為()A.1 B.2 C.﹣1 D.﹣23.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件4.2017年北京市在經(jīng)濟發(fā)展、社會進步、城市建設(shè)、民生改善等方面取得新成績、新面貌.綜合實力穩(wěn)步提升.全市地區(qū)生產(chǎn)總值達(dá)到280000億元,將280000用科學(xué)記數(shù)法表示為()A.280×103 B.28×104 C.2.8×105 D.0.28×1065.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)6.如圖所示的幾何體的俯視圖是()A. B. C. D.7.某經(jīng)銷商銷售一批電話手表,第一個月以550元/塊的價格售出60塊,第二個月起降價,以500元/塊的價格將這批電話手表全部售出,銷售總額超過了5.5萬元.這批電話手表至少有()A.103塊 B.104塊 C.105塊 D.106塊8.下列各式計算正確的是()A. B. C. D.9.為喜迎黨的十九大召開,樂陵某中學(xué)剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.10.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.11.根據(jù)習(xí)近平總書記在“一帶一路”國際合作高峰論壇開幕式上的演講,中國將在未來3年向參與“一帶一路”建設(shè)的發(fā)展中國家和國際組織提供60000000000元人民幣援助,建設(shè)更多民生項目,其中數(shù)據(jù)60000000000用科學(xué)記數(shù)法表示為()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×101112.的相反數(shù)是()A.6 B.-6 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.14.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.15.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.16.計算:(3+1)(3﹣1)=.17.已知關(guān)于x的一元二次方程mx2+5x+m2﹣2m=0有一個根為0,則m=_____.18.若關(guān)于x的方程=0有增根,則m的值是______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經(jīng)過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.20.(6分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.21.(6分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側(cè)的一點,若,且與的面積相等,求點的坐標(biāo);(3)若在軸上有且只有一點,使,求的值.22.(8分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.如圖(1)當(dāng)射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時,求線段EF的長.23.(8分)填空并解答:某單位開設(shè)了一個窗口辦理業(yè)務(wù),并按顧客“先到達(dá),先辦理”的方式服務(wù),該窗口每2分鐘服務(wù)一位顧客.已知早上8:00上班窗口開始工作時,已經(jīng)有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達(dá),且以后每5分鐘就有一位“新顧客”到達(dá).該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設(shè)原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a(chǎn)1a2a3a4a5a6c1c2c3c4…到達(dá)窗口時刻000000161116…服務(wù)開始時刻024681012141618…每人服務(wù)時長2222222222…服務(wù)結(jié)束時刻2468101214161820…根據(jù)上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數(shù)),則當(dāng)a最小取什么值時,窗口排隊現(xiàn)象不可能消失.分析:第n個“新顧客”到達(dá)窗口時刻為,第(n﹣1)個“新顧客”服務(wù)結(jié)束的時刻為.24.(10分)已知關(guān)于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數(shù)根x1,x1.求實數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數(shù)k的值.25.(10分)如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點D,過點D的直線交BC于點E,交AB的延長線于點P,∠A=∠PDB.(1)求證:PD是⊙O的切線;(2)若AB=4,DA=DP,試求弧BD的長;(3)如圖②,點M是弧AB的中點,連結(jié)DM,交AB于點N.若tanA=12,求DN26.(12分)(1)解不等式組:;(2)解方程:.27.(12分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設(shè)拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標(biāo);(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標(biāo);若不存在,請說明理由.圖1備用圖

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】由題意,得

x-2=0,1-y=0,

解得x=2,y=1.

x-y=2-1=-1,

故選:A.2、B【解析】

根據(jù)一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關(guān)于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關(guān)于k的新方程,通過解新方程來求k的值是解題的關(guān)鍵.3、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.4、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將280000用科學(xué)記數(shù)法表示為2.8×1.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.5、D【解析】

過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標(biāo).【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標(biāo)為(4,5),故選:D.【點睛】本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計算.6、D【解析】試題分析:根據(jù)俯視圖的作法即可得出結(jié)論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.7、C【解析】試題分析:根據(jù)題意設(shè)出未知數(shù),列出相應(yīng)的不等式,從而可以解答本題.設(shè)這批手表有x塊,550×60+(x﹣60)×500>55000解得,x>104∴這批電話手表至少有105塊考點:一元一次不等式的應(yīng)用8、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.9、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關(guān)鍵在于對知識點的理解和把握.10、A【解析】

列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.11、C【解析】

解:將60000000000用科學(xué)記數(shù)法表示為:6×1.故選C.【點睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù),掌握科學(xué)計數(shù)法的一般形式是解題關(guān)鍵.12、D【解析】

根據(jù)相反數(shù)的定義解答即可.【詳解】根據(jù)相反數(shù)的定義有:的相反數(shù)是.故選D.【點睛】本題考查了相反數(shù)的意義,一個數(shù)的相反數(shù)就是在這個數(shù)前面添上“﹣”號;一個正數(shù)的相反數(shù)是負(fù)數(shù),一個負(fù)數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因為k≠0,所以k的值為﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.14、7【解析】設(shè)樹的高度為m,由相似可得,解得,所以樹的高度為7m15、2﹣【解析】

過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點睛】本題考查了扇形的面積公式和長方形性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)圖形的對稱性分析,主要考查學(xué)生的計算能力.16、1.【解析】

根據(jù)平方差公式計算即可.【詳解】原式=(3)2-12=18-1=1故答案為1.【點睛】本題考查的是二次根式的混合運算,掌握平方差公式、二次根式的性質(zhì)是解題的關(guān)鍵.17、1【解析】【分析】根據(jù)一元二次方程的定義以及一元二次方程的解的定義列出關(guān)于m的方程,通過解關(guān)于m的方程求得m的值即可.【詳解】∵關(guān)于x的一元二次方程mx1+5x+m1﹣1m=0有一個根為0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【點睛】本題考查了一元二次方程ax1+bx+c=0(a≠0)的解的定義.解答該題時需注意二次項系數(shù)a≠0這一條件.18、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A,C點坐標(biāo),根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結(jié)論.【詳解】(1)當(dāng)x=0時,y=2,即C(0,2),當(dāng)y=0時,x=4,即A(4,0),將A,C點坐標(biāo)代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設(shè)點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當(dāng)x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設(shè)FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標(biāo)是(2,3)或(,).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的判定與性質(zhì)得出,又利用了二次函數(shù)的性質(zhì);解(3)的關(guān)鍵是利用解直角三角形,要分類討論,以防遺漏.20、(1);(2)①;②【解析】

(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.【詳解】解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植B種樹苗的工人為:80-10-50=20名.采訪到種植C種樹苗工人的概率為:=.【點睛】本題主要考查了一次函數(shù)的實際問題,以及概率的求法,能夠?qū)嶋H問題轉(zhuǎn)化成數(shù)學(xué)模型是解答此題的關(guān)鍵.21、(1).;(2)點坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方時,直線與關(guān)于對稱.,,.,,.綜上所述,點坐標(biāo)為;.(3)由題意可得:.,,,即.,,.設(shè)的中點為,點有且只有一個,以為直徑的圓與軸只有一個交點,且為切點.軸,為的中點,.,,,,即,.,.點睛:此題主要考查二次函數(shù)的綜合問題,會靈活根據(jù)題意求拋物線解析式,會分析題中的基本關(guān)系列方程解決問題,會分類討論各種情況是解題的關(guān)鍵.22、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】

(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關(guān)的綜合性題目,用到的知識點有三角形相似的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理的運用,靈活運用相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵,解答時,要仔細(xì)觀察圖形、選擇合適的判定方法,注意數(shù)形結(jié)合思想的運用.23、(1)5;(2)5n﹣4,na+6a.【解析】

(1)第5位,“新顧客”到達(dá)時間是20分鐘,第11位顧客結(jié)束服務(wù)的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達(dá)時間為1,6,11,16,…,則第n個“新顧客”到達(dá)窗口時刻為5n﹣4,由表格可知,“新顧客”服務(wù)開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務(wù)開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務(wù)結(jié)束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達(dá)時間是20分鐘,第11位顧客結(jié)束服務(wù)的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達(dá)時間為1,6,11,16,…,∴第n個“新顧客”到達(dá)窗口時刻為5n﹣4,由表格可知,“新顧客”服務(wù)開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務(wù)開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務(wù)開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服務(wù)結(jié)束的時間為(5+n)a+a=na+6a,故答案為:5n﹣4,na+6a.【點睛】本題考查了列代數(shù)式,用代數(shù)式表示數(shù)的規(guī)律,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,尋找規(guī)律,列出代數(shù)式.24、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數(shù)k的取值范圍;(2)由根與系數(shù)的關(guān)系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數(shù)k的取值范圍為k≤.(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數(shù)k的值為﹣2.考點:一元二次方程根與系數(shù)的關(guān)系,根的判別式.25、(1)見解析;(2)23π;(3)【解析】

(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進而可得到∠DOB=60o,然后根據(jù)弧長公式計算即可;(3)連結(jié)OM,過D作DF⊥AB于點F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.【詳解】(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圓上,∴PD是⊙O的切線.(2)設(shè)∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD長l=60·π·2(3)連結(jié)OM,過D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論