版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江西省新余一中學(xué)2024年中考數(shù)學(xué)最后一模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.52.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x63.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個頂點O在坐標(biāo)原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.804.給出下列各數(shù)式,①②③④計算結(jié)果為負(fù)數(shù)的有()A.1個 B.2個 C.3個 D.4個5.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.6.如圖,中,E是BC的中點,設(shè),那么向量用向量表示為()A. B. C. D.7.如圖,在平面直角坐標(biāo)系中,以O(shè)為圓心,適當(dāng)長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標(biāo)為(2a,b+1),則a與b的數(shù)量關(guān)系為()A.a(chǎn)=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=18.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.109.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°10.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.311.下列幾何體中三視圖完全相同的是()A. B. C. D.12.不等式組的解在數(shù)軸上表示為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠A=90°,∠ABC的平分線BD交AC于點D,DE是BC的垂直平分線,點E是垂足.若DC=2,AD=1,則BE的長為______.14.圖①是一個三角形,分別連接這個三角形的中點得到圖②;再分別連接圖②中間小三角形三邊的中點,得到圖③.按上面的方法繼續(xù)下去,第n個圖形中有_____個三角形(用含字母n的代數(shù)式表示).15.在數(shù)軸上與所對應(yīng)的點相距4個單位長度的點表示的數(shù)是______.16.已知一個正六邊形的邊心距為,則它的半徑為______.17.如圖,AB=AC,要使△ABE≌△ACD,應(yīng)添加的條件是(添加一個條件即可).18.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),使AE=CF,連接AF、BE相交于點P,當(dāng)點E從點A運動到點C時,點P經(jīng)過點的路徑長為__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)西安匯聚了很多人們耳熟能詳?shù)年兾髅朗常钊A和王濤同時去選美食,李華準(zhǔn)備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準(zhǔn)備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.20.(6分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.21.(6分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達(dá)終點?22.(8分)(1)計算:;(2)解不等式組:23.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時,求⊙O的面積.24.(10分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF25.(10分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.26.(12分)甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖象如圖所示.(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關(guān)系式.(2)求乙組加工零件總量的值.(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?再經(jīng)過多長時間恰好裝滿第2箱?27.(12分)已知是上一點,.如圖①,過點作的切線,與的延長線交于點,求的大小及的長;如圖②,為上一點,延長線與交于點,若,求的大小及的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.2、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.3、B【解析】
過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標(biāo)為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.4、B【解析】∵①;②;③;④;∴上述各式中計算結(jié)果為負(fù)數(shù)的有2個.故選B.5、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標(biāo)系中的圖象情況,而這與“b”的取值無關(guān).6、A【解析】
根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.7、B【解析】試題分析:根據(jù)作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標(biāo)的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.8、C【解析】
根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識點.9、B【解析】
根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.10、B【解析】
根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.11、A【解析】
找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關(guān)知識,注意三視圖都相同的常見的幾何體有球和正方體.12、C【解析】
先解每一個不等式,再根據(jù)結(jié)果判斷數(shù)軸表示的正確方法.【詳解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴數(shù)軸表示的正確方法為C.故選C.【點睛】考核知識點:解不等式組.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】∵DE是BC的垂直平分線,∴DB=DC=2,∵BD是∠ABC的平分線,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE=,故答案為.點睛:本題考查的是線段的垂直平分線的性質(zhì)、角平分線的性質(zhì),掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關(guān)鍵.14、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個數(shù),可以發(fā)現(xiàn):第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去如圖中三角形的個數(shù)為按照這個規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個數(shù),圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;圖中三角形的個數(shù)為;可以發(fā)現(xiàn),第幾個圖形中三角形的個數(shù)就是4與幾的乘積減去1.按照這個規(guī)律,如果設(shè)圖形的個數(shù)為n,那么其中三角形的個數(shù)為.故答案為.【點睛】此題主要考查學(xué)生對圖形變化類這個知識點的理解和掌握,解答此類題目的關(guān)鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認(rèn)真思考,歸納總結(jié)出規(guī)律,此類題目難度一般偏大,屬于難題.15、2或﹣1【解析】解:當(dāng)該點在﹣2的右邊時,由題意可知:該點所表示的數(shù)為2,當(dāng)該點在﹣2的左邊時,由題意可知:該點所表示的數(shù)為﹣1.故答案為2或﹣1.點睛:本題考查數(shù)軸,涉及有理數(shù)的加減運算、分類討論的思想.16、2【解析】試題分析:設(shè)正六邊形的中心是O,一邊是AB,過O作OG⊥AB與G,在直角△OAG中,根據(jù)三角函數(shù)即可求得OA.解:如圖所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案為2.點睛:本題主要考查正多邊形和圓的關(guān)系.解題的關(guān)鍵在于利用正多邊形的半徑、邊心距構(gòu)造直角三角形并利用解直角三角形的知識求解.17、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).18、π.【解析】
由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.【詳解】:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°-∠APE=120°.
∴當(dāng)AE=CF時,點P的路徑是一段弧,且∠AOB=120°,
又∵AB=6,
∴OA=2,
點P的路徑是l=,
故答案為.【點睛】本題考查了等邊三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,弧線長公式的運用,解題的關(guān)鍵是證明三角形全等.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)見解析.【解析】
(1)直接根據(jù)概率的意義求解即可;(2)列出表格,再找到李華和王濤同時選擇的美食都是涼皮的情況數(shù),利用概率公式即可求得答案.【詳解】解:(1)李華選擇的美食是羊肉泡饃的概率為;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16種情況,其中李華和王濤選擇的美食都是涼皮的結(jié)果數(shù)為2,所以李華和王濤選擇的美食都是涼皮的概率為=.【點睛】本題涉及樹狀圖或列表法的相關(guān)知識,難度中等,考查了學(xué)生的分析能力.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進(jìn)而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進(jìn)而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進(jìn)而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進(jìn)而可得出CB′的長度,再結(jié)合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當(dāng)點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當(dāng)點B′在點D右邊時,半圓交直線CD于點D、B′.∴當(dāng)半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及切線的性質(zhì),解題的關(guān)鍵是:(2)利用相似三角形的性質(zhì)求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數(shù)形結(jié)合求出d的取值范圍.21、(1);(2)80米/分;(3)6分鐘【解析】
(1)根據(jù)圖示,設(shè)線段AB的表達(dá)式為:y=kx+b,把把(4,240),(16,0)代入得到關(guān)于k,b的二元一次方程組,解之,即可得到答案,
(2)根據(jù)線段OA,求出甲的速度,根據(jù)圖示可知:乙在點B處追上甲,根據(jù)速度=路程÷時間,計算求值即可,
(3)根據(jù)圖示,求出二者相遇時與出發(fā)點的距離,進(jìn)而求出與終點的距離,結(jié)合(2)的結(jié)果,分別計算出相遇后,到達(dá)終點甲和乙所用的時間,二者的時間差即可所求答案.【詳解】(1)根據(jù)題意得:
設(shè)線段AB的表達(dá)式為:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即線段AB的表達(dá)式為:y=-20x+320(4≤x≤16),
(2)又線段OA可知:甲的速度為:=60(米/分),
乙的步行速度為:=80(米/分),
答:乙的步行速度為80米/分,
(3)在B處甲乙相遇時,與出發(fā)點的距離為:240+(16-4)×60=960(米),
與終點的距離為:2400-960=1440(米),
相遇后,到達(dá)終點甲所用的時間為:=24(分),
相遇后,到達(dá)終點乙所用的時間為:=18(分),
24-18=6(分),
答:乙比甲早6分鐘到達(dá)終點.【點睛】本題考查了一次函數(shù)的應(yīng)用,正確掌握分析函數(shù)圖象是解題的關(guān)鍵.22、(1);(2).【解析】
(1)根據(jù)冪的運算與實數(shù)的運算性質(zhì)計算即可.(2)先整理為最簡形式,再解每一個不等式,最后求其解集.【詳解】(1)解:原式==(2)解不等式①,得.解不等式②,得.∴原不等式組的解集為【點睛】本題考查了實數(shù)的混合運算和解一元一次不等式組,熟練掌握和運用相關(guān)運算性質(zhì)是解答關(guān)鍵.23、(1)證明見解析;(2)2516【解析】
(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;
(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.24、詳見解析【解析】
根據(jù)平行四邊形的性質(zhì)和已知條件證明△ABE≌△CDF,再利用全等三角形的性質(zhì):即可得到AE=CF.【詳解】證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他證法也可)25、(1)、(2)證明見解析(3)28【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可直接證明△CBE≌△CDF,從而得出CE=CF;(2)延長AD至F,使DF=BE,連接CF,根據(jù)(1)知∠BCE=∠DCF,即可證明∠ECF=∠BCD=90°,根據(jù)∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)過C作CF⊥AD的延長線于點F.則四邊形ABCF是正方形,設(shè)DF=x,則AD=12-x,根據(jù)(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;試題解析:(1)如圖1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如圖2,延長AD至F,使DF=BE,連接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貸款合同補充協(xié)議書格式
- 沙石運輸協(xié)調(diào)協(xié)議
- 射燈產(chǎn)品買賣合同
- 農(nóng)村集體房屋買賣合同的鑒定機構(gòu)
- 垃圾清運與環(huán)保工程合作協(xié)議
- 增值服務(wù)協(xié)議擴(kuò)充
- 貸款分期還款合同模板在線
- 外墻保溫真石漆分包合同樣本
- 茶葉人力資源服務(wù)外包合同
- 物業(yè)管理公司廠區(qū)管理合同
- (高清版)JGT 225-2020 預(yù)應(yīng)力混凝土用金屬波紋管
- 2023-2024學(xué)年四川省綿陽市九年級上冊期末化學(xué)試題(附答案)
- 心電圖進(jìn)修匯報
- 中醫(yī)科進(jìn)修總結(jié)匯報
- 初中英語比較級和最高級專項練習(xí)題含答案
- 激光技術(shù)在能源、環(huán)保、農(nóng)業(yè)等領(lǐng)域的應(yīng)用
- 【高分復(fù)習(xí)筆記】周小普《廣播電視概論》筆記和課后習(xí)題詳解
- 中國玉石及玉文化鑒賞智慧樹知到期末考試答案2024年
- MOOC 物理與藝術(shù)-南京航空航天大學(xué) 中國大學(xué)慕課答案
- 《旅游財務(wù)管理》課件-1認(rèn)識旅游企業(yè)
- 家政運營方案
評論
0/150
提交評論