版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
海南省瓊海市市級(jí)名校2021-2022學(xué)年十校聯(lián)考最后數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果將拋物線向下平移1個(gè)單位,那么所得新拋物線的表達(dá)式是A. B. C. D.2.“鳳鳴”文學(xué)社在學(xué)校舉行的圖書共享儀式上互贈(zèng)圖書,每個(gè)同學(xué)都把自己的圖書向本組其他成員贈(zèng)送一本,某組共互贈(zèng)了210本圖書,如果設(shè)該組共有x名同學(xué),那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2103.若點(diǎn)P(﹣3,y1)和點(diǎn)Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,則y1與y2的大小關(guān)系為()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y24.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點(diǎn)B旋轉(zhuǎn)得到矩形A'BC'D,點(diǎn)A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.5.如圖,直線a∥b,點(diǎn)A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點(diǎn),若∠2=32°,則∠1的大小為()A.32° B.42° C.46° D.48°6.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個(gè)正六邊形的邊心距OM的長(zhǎng)為()A.2 B.2 C. D.47.-10-4的結(jié)果是()A.-7B.7C.-14D.138.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長(zhǎng)率.設(shè)該果園水果產(chǎn)量的年平均增長(zhǎng)率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1449.兩個(gè)同心圓中大圓的弦AB與小圓相切于點(diǎn)C,AB=8,則形成的圓環(huán)的面積是()A.無法求出 B.8 C.8 D.1610.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°11.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π12.若分式有意義,則a的取值范圍是()A.a(chǎn)≠1 B.a(chǎn)≠0 C.a(chǎn)≠1且a≠0 D.一切實(shí)數(shù)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是.14.將6本相同厚度的書疊起來,它們的高度是9厘米.如果將這樣相同厚度的書疊起來的高度是42厘米,那么這些書有_____本.15.如圖,一扇形紙扇完全打開后,外側(cè)兩竹條AB和AC的夾角為120°,AB長(zhǎng)為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結(jié)果保留π)16.化簡(jiǎn):=____.17.如圖,矩形ABCD的面積為20cm2,對(duì)角線交于點(diǎn)O;以AB、AO為鄰邊作平行四邊形AOC1B,對(duì)角線交于點(diǎn)O1;以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為_____.18.如圖①,在矩形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止,設(shè)點(diǎn)P所走的路程為x,線段OP的長(zhǎng)為y,若y與x之間的函數(shù)圖象如圖②所示,則矩形ABCD的周長(zhǎng)為_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計(jì)圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?20.(6分)如圖,拋物線y=ax2+bx+c與x軸的交點(diǎn)分別為A(﹣6,0)和點(diǎn)B(4,0),與y軸的交點(diǎn)為C(0,3).(1)求拋物線的解析式;(2)點(diǎn)P是線段OA上一動(dòng)點(diǎn)(不與點(diǎn)A重合),過P作平行于y軸的直線與AC交于點(diǎn)Q,點(diǎn)D、M在線段AB上,點(diǎn)N在線段AC上.①是否同時(shí)存在點(diǎn)D和點(diǎn)P,使得△APQ和△CDO全等,若存在,求點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點(diǎn)M的坐標(biāo).21.(6分)車輛經(jīng)過潤(rùn)揚(yáng)大橋收費(fèi)站時(shí),4個(gè)收費(fèi)通道A.B、C、D中,可隨機(jī)選擇其中的一個(gè)通過.一輛車經(jīng)過此收費(fèi)站時(shí),選擇A通道通過的概率是;求兩輛車經(jīng)過此收費(fèi)站時(shí),選擇不同通道通過的概率.22.(8分)4×100米拉力賽是學(xué)校運(yùn)動(dòng)會(huì)最精彩的項(xiàng)目之一.圖中的實(shí)線和虛線分別是初三?一班和初三?二班代表隊(duì)在比賽時(shí)運(yùn)動(dòng)員所跑的路程y(米)與所用時(shí)間x(秒)的函數(shù)圖象(假設(shè)每名運(yùn)動(dòng)員跑步速度不變,交接棒時(shí)間忽略不計(jì)).問題:(1)初三?二班跑得最快的是第接力棒的運(yùn)動(dòng)員;(2)發(fā)令后經(jīng)過多長(zhǎng)時(shí)間兩班運(yùn)動(dòng)員第一次并列?23.(8分)我們已經(jīng)知道一些特殊的勾股數(shù),如三連續(xù)正整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;事實(shí)上,勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).另外利用一些構(gòu)成勾股數(shù)的公式也可以寫出許多勾股數(shù),畢達(dá)哥拉斯學(xué)派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))是一組勾股數(shù),請(qǐng)證明滿足以上公式的a、b、c的數(shù)是一組勾股數(shù).然而,世界上第一次給出的勾股數(shù)公式,收集在我國(guó)古代的著名數(shù)學(xué)著作《九章算術(shù)》中,書中提到:當(dāng)a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數(shù),m>n時(shí),a、b、c構(gòu)成一組勾股數(shù);利用上述結(jié)論,解決如下問題:已知某直角三角形的邊長(zhǎng)滿足上述勾股數(shù),其中一邊長(zhǎng)為37,且n=5,求該直角三角形另兩邊的長(zhǎng).24.(10分)已知:如圖,在平面直角坐標(biāo)系xOy中,拋物線的圖像與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,頂點(diǎn)C在直線上,將拋物線沿射線AC的方向平移,當(dāng)頂點(diǎn)C恰好落在y軸上的點(diǎn)D處時(shí),點(diǎn)B落在點(diǎn)E處.(1)求這個(gè)拋物線的解析式;(2)求平移過程中線段BC所掃過的面積;(3)已知點(diǎn)F在x軸上,點(diǎn)G在坐標(biāo)平面內(nèi),且以點(diǎn)C、E、F、G為頂點(diǎn)的四邊形是矩形,求點(diǎn)F的坐標(biāo).25.(10分)(1)|﹣2|+?tan30°+(2018﹣π)0-()-1(2)先化簡(jiǎn),再求值:(﹣1)÷,其中x的值從不等式組的整數(shù)解中選?。?6.(12分)省教育廳決定在全省中小學(xué)開展“關(guān)注校車、關(guān)愛學(xué)生”為主題的交通安全教育宣傳周活動(dòng),某中學(xué)為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)圖中提供的信息,解答下列問題.m=%,這次共抽取名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?如果該校共有1500名學(xué)生,請(qǐng)你估計(jì)該校騎自行車上學(xué)的學(xué)生有多少名?27.(12分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點(diǎn)F,設(shè)AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長(zhǎng).(3)當(dāng)∠ABC=____時(shí),BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
根據(jù)向下平移,縱坐標(biāo)相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個(gè)單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.2、B【解析】
設(shè)全組共有x名同學(xué),那么每名同學(xué)送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實(shí)際互贈(zèng)了210本圖書,則x(x?1)=210.故選:B.3、A【解析】
分別將點(diǎn)P(﹣3,y1)和點(diǎn)Q(﹣1,y2)代入正比例函數(shù)y=﹣k2x,求出y1與y2的值比較大小即可.【詳解】∵點(diǎn)P(﹣3,y1)和點(diǎn)Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案選A.【點(diǎn)睛】本題考查了正比例函數(shù),解題的關(guān)鍵是熟練的掌握正比例函數(shù)的知識(shí)點(diǎn).4、A【解析】
本題首先利用A點(diǎn)恰好落在邊CD上,可以求出A′C=BC′=1,又因?yàn)锳′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個(gè)部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點(diǎn)睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關(guān)鍵.5、D【解析】
根據(jù)平行線的性質(zhì)與對(duì)頂角的性質(zhì)求解即可.【詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是熟練的掌握平行線的性質(zhì)與對(duì)頂角的性質(zhì).6、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB
∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點(diǎn)睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.7、C【解析】解:-10-4=-1.故選C.8、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長(zhǎng)率)2,把相關(guān)數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點(diǎn)評(píng):考查列一元二次方程;得到2013年產(chǎn)量的等量關(guān)系是解決本題的關(guān)鍵.9、D【解析】試題分析:設(shè)AB于小圓切于點(diǎn)C,連接OC,OB.∵AB于小圓切于點(diǎn)C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(huán)(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點(diǎn):1.垂徑定理的應(yīng)用;2.切線的性質(zhì).10、B【解析】
先根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點(diǎn)睛】本題考查了等腰三角形的兩個(gè)底角相等的性質(zhì),等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質(zhì),三角形內(nèi)角和定理以及角平分線定義,求出∠ACB=70°是解題的關(guān)鍵.11、D【解析】
利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點(diǎn)睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關(guān)鍵.12、A【解析】分析:根據(jù)分母不為零,可得答案詳解:由題意,得,解得故選A.點(diǎn)睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、①③⑤【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;
②過B作BF⊥AE,交AE的延長(zhǎng)線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;
④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此選項(xiàng)成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此選項(xiàng)成立;
②過B作BF⊥AE,交AE的延長(zhǎng)線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
,
故此選項(xiàng)不正確;
④如圖,連接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S
△ABP+S
△ADP=S
△ABD-S
△BDP=
S
正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.
故此選項(xiàng)不正確.
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB
2=(AE+EF)
2+BF
2=4+
,
∴S
正方形ABCD=AB
2=4+
,
故此選項(xiàng)正確.
故答案為①③⑤.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì)的運(yùn)用、正方形的性質(zhì)的運(yùn)用、正方形和三角形的面積公式的運(yùn)用、勾股定理的運(yùn)用等知識(shí).14、1.【解析】
因?yàn)橐槐緯暮穸仁且欢ǖ模鶕?jù)本數(shù)與書的高度成正比列比例式即可得到結(jié)論.【詳解】設(shè)這些書有x本,
由題意得,,
解得:x=1,
答:這些書有1本.
故答案為:1.【點(diǎn)睛】本題考查了比例的性質(zhì),正確的列出比例式是解題的關(guān)鍵.15、πcm1.【解析】
求出AD,先分別求出兩個(gè)扇形的面積,再求出答案即可.【詳解】解:∵AB長(zhǎng)為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.【點(diǎn)睛】本題考查了扇形的面積計(jì)算,能熟記扇形的面積公式是解此題的關(guān)鍵.16、【解析】
先利用除法法則變形,約分后通分并利用同分母分式的減法法則計(jì)算即可.【詳解】原式,
故答案為【點(diǎn)睛】本題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解題的關(guān)鍵.17、【解析】試題分析:根據(jù)矩形的性質(zhì)求出△AOB的面積等于矩形ABCD的面積的,求出△AOB的面積,再分別求出、、、的面積,即可得出答案∵四邊形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考點(diǎn):矩形的性質(zhì);平行四邊形的性質(zhì)點(diǎn)評(píng):本題考查了矩形的性質(zhì),平行四邊形的性質(zhì),三角形的面積的應(yīng)用,解此題的關(guān)鍵是能根據(jù)求出的結(jié)果得出規(guī)律,注意:等底等高的三角形的面積相等18、1【解析】分析:根據(jù)點(diǎn)P的移動(dòng)規(guī)律,當(dāng)OP⊥BC時(shí)取最小值2,根據(jù)矩形的性質(zhì)求得矩形的長(zhǎng)與寬,易得該矩形的周長(zhǎng).詳解:∵當(dāng)OP⊥AB時(shí),OP最小,且此時(shí)AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案為1.點(diǎn)睛:本題考查了動(dòng)點(diǎn)問題的函數(shù)圖象,關(guān)鍵是根據(jù)所給函數(shù)圖象和點(diǎn)的運(yùn)動(dòng)軌跡判斷出AP=4,OP=2.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)80,20,72;(2)16,補(bǔ)圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計(jì)算即可求出總?cè)藬?shù),再用總?cè)藬?shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計(jì)算即可得解:樣本中的總?cè)藬?shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計(jì)圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可.(3)設(shè)原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補(bǔ)全統(tǒng)計(jì)圖如圖所示;(3)設(shè)原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點(diǎn):1.條形統(tǒng)計(jì)圖;2.扇形統(tǒng)計(jì)圖;3.頻數(shù)、頻率和總量的關(guān)系;4.一元一次不等式的應(yīng)用.20、(1)y=﹣x2﹣x+3;(2)①點(diǎn)D坐標(biāo)為(﹣,0);②點(diǎn)M(,0).【解析】
(1)應(yīng)用待定系數(shù)法問題可解;(2)①通過分類討論研究△APQ和△CDO全等②由已知求點(diǎn)D坐標(biāo),證明DN∥BC,從而得到DN為中線,問題可解.【詳解】(1)將點(diǎn)(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得:,∴拋物線解析式為:y=-x2-x+3;(2)①存在點(diǎn)D,使得△APQ和△CDO全等,當(dāng)D在線段OA上,∠QAP=∠DCO,AP=OC=3時(shí),△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,,∴,∴OD=,∴點(diǎn)D坐標(biāo)為(-,0).由對(duì)稱性,當(dāng)點(diǎn)D坐標(biāo)為(,0)時(shí),由點(diǎn)B坐標(biāo)為(4,0),此時(shí)點(diǎn)D(,0)在線段OB上滿足條件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,則點(diǎn)D坐標(biāo)為(-1,0)且AD=BD=5,連DN,CM,則DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴,則點(diǎn)N為AC中點(diǎn).∴DN時(shí)△ABC的中位線,∵DN=DM=BC=,∴OM=DM-OD=∴點(diǎn)M(,0)【點(diǎn)睛】本題是二次函數(shù)綜合題,考查了二次函數(shù)待定系數(shù)法、三角形全等的判定、銳角三角形函數(shù)的相關(guān)知識(shí).解答時(shí),注意數(shù)形結(jié)合.21、(1);(2).【解析】試題分析:(1)根據(jù)概率公式即可得到結(jié)論;(2)畫出樹狀圖即可得到結(jié)論.試題解析:(1)選擇A通道通過的概率=,故答案為;(2)設(shè)兩輛車為甲,乙,如圖,兩輛車經(jīng)過此收費(fèi)站時(shí),會(huì)有16種可能的結(jié)果,其中選擇不同通道通過的有12種結(jié)果,∴選擇不同通道通過的概率==.22、(1)1;(2)發(fā)令后第37秒兩班運(yùn)動(dòng)員在275米處第一次并列.【解析】
(1)直接根據(jù)圖象上點(diǎn)橫坐標(biāo)可知道最快的是第1接力棒的運(yùn)動(dòng)員用了12秒跑完100米;(2)分別利用待定系數(shù)法把圖象相交的部分,一班,二班的直線解析式求出來后,聯(lián)立成方程組求交點(diǎn)坐標(biāo)即可.【詳解】(1)從函數(shù)圖象上可看出初三?二班跑得最快的是第1接力棒的運(yùn)動(dòng)員用了12秒跑完100米;(2)設(shè)在圖象相交的部分,設(shè)一班的直線為y1=kx+b,把點(diǎn)(28,200),(40,300)代入得:解得:k=,b=﹣,即y1=x﹣,二班的為y2=k′x+b′,把點(diǎn)(25,200),(41,300),代入得:解得:k′=,b′=,即y2=x+聯(lián)立方程組,解得:,所以發(fā)令后第37秒兩班運(yùn)動(dòng)員在275米處第一次并列.【點(diǎn)睛】本題考查了利用一次函數(shù)的模型解決實(shí)際問題的能力和讀圖能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解,并會(huì)根據(jù)圖示得出所需要的信息.要掌握利用函數(shù)解析式聯(lián)立成方程組求交點(diǎn)坐標(biāo)的方法.23、(1)證明見解析;(2)當(dāng)n=5時(shí),一邊長(zhǎng)為37的直角三角形另兩邊的長(zhǎng)分別為12,1.【解析】
(1)根據(jù)題意只需要證明a2+b2=c2,即可解答(2)根據(jù)題意將n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再將直角三角形的一邊長(zhǎng)為37,分別分三種情況代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【詳解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n為正整數(shù),∴a、b、c是一組勾股數(shù);(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一邊長(zhǎng)為37,∴分三種情況討論,①當(dāng)a=37時(shí),(m2﹣52)=37,解得m=±3(不合題意,舍去)②當(dāng)y=37時(shí),5m=37,解得m=(不合題意舍去);③當(dāng)z=37時(shí),37=(m2+n2),解得m=±7,∵m>n>0,m、n是互質(zhì)的奇數(shù),∴m=7,把m=7代入①②得,x=12,y=1.綜上所述:當(dāng)n=5時(shí),一邊長(zhǎng)為37的直角三角形另兩邊的長(zhǎng)分別為12,1.【點(diǎn)睛】此題考查了勾股數(shù)和勾股定理,熟練掌握勾股定理是解題關(guān)鍵24、(1)拋物線的解析式為;(2)12;(1)滿足條件的點(diǎn)有F1(,0),F(xiàn)2(,0),F(xiàn)1(,0),F(xiàn)4(,0).【解析】分析:(1)根據(jù)對(duì)稱軸方程求得b=﹣4a,將點(diǎn)A的坐標(biāo)代入函數(shù)解析式求得9a+1b+1=0,聯(lián)立方程組,求得系數(shù)的值即可;(2)拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,根據(jù)二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和三角形的面積得到:∴.(1)聯(lián)結(jié)CE.分類討論:(i)當(dāng)CE為矩形的一邊時(shí),過點(diǎn)C作CF1⊥CE,交x軸于點(diǎn)F1,設(shè)點(diǎn)F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;(ii)當(dāng)CE為矩形的對(duì)角線時(shí),以點(diǎn)O為圓心,OC長(zhǎng)為半徑畫弧分別交x軸于點(diǎn)F1、F4,利用圓的性質(zhì)解答.詳解:(1)∵頂點(diǎn)C在直線x=2上,∴,∴b=﹣4a.將A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,∴拋物線的解析式為y=x2﹣4x+1.(2)過點(diǎn)C作CM⊥x軸,CN⊥y軸,垂足分別為M、N.∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.∵拋物線y=x2﹣4x+1與y軸交于點(diǎn)B,∴B(0,1),∴BD=2.∵拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,∴.(1)聯(lián)結(jié)CE.∵四邊形BCDE是平行四邊形,∴點(diǎn)O是對(duì)角線CE與BD的交點(diǎn),即.(i)當(dāng)CE為矩形的一邊時(shí),過點(diǎn)C作CF1⊥CE,交x軸于點(diǎn)F1,設(shè)點(diǎn)F1(a,0).在Rt△OCF1中,,即a2=(a﹣2)2+5,解得:,∴點(diǎn).同理,得點(diǎn);(ii)當(dāng)CE為矩形的對(duì)角線時(shí),以點(diǎn)O為圓心,OC長(zhǎng)為半徑畫弧分別交x軸于點(diǎn)F1、F4,可得:,得點(diǎn)、.綜上所述:滿足條件的點(diǎn)有),.點(diǎn)睛:本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,平行四邊形的面積公式,正確的理解題意是解題的關(guān)鍵.25、(1)-1(1)-1【解析】
(1)先根據(jù)根據(jù)絕對(duì)值的意義、立方根的意義、特殊角的三角函數(shù)值、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪的意義化簡(jiǎn),然后按照實(shí)數(shù)的運(yùn)算法則計(jì)算即可;(1)把括號(hào)里通分,把的分子、分母分解因式約分,然后把除法轉(zhuǎn)化為乘法計(jì)算;然后求出不等式組的整數(shù)解,選一個(gè)使分式有意義的值代入計(jì)算即可.【詳解】(1)原式=1+3×+1﹣5=1++1﹣5=﹣1;(1)原式====﹣,解不等式組得:-1≤x則不等式組的整數(shù)解為﹣1、0、1、1,∵x(x+1)≠0且x﹣1≠0,∴x≠0且x≠±1,∴x=1,則原式=﹣=﹣1.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,分式的化簡(jiǎn)求值,不等式組的解法.熟練掌握各知識(shí)點(diǎn)是解答本題的關(guān)鍵,本題的易錯(cuò)點(diǎn)是容易忽視分式有意義的條件.26、(1)、26%;50;(2)、公交車;(3)、300名.【解析】試題分析:(1)、用1減去其它3個(gè)的百分比,從而得出m的值;根據(jù)乘公交車的人數(shù)和百分比得出總?cè)藬?shù),然后求出騎自行車的人數(shù),將圖形補(bǔ)全;(2)、根據(jù)條形統(tǒng)計(jì)圖得出哪種人數(shù)最多;(3)、根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025深圳市廠房出租合同范本
- 2025深圳要求公積金須寫入勞動(dòng)合同如果沒有這樣做是否是違法
- 二零二五年度金融機(jī)構(gòu)員工勞務(wù)派遣服務(wù)合同3篇
- 二零二五年度四人虛擬現(xiàn)實(shí)四人合伙人協(xié)議3篇
- 二零二五年度教育培訓(xùn)兼職聘用服務(wù)協(xié)議3篇
- 二零二五年度個(gè)人與公司代收代付服務(wù)合同范本3篇
- 二零二五年度教育機(jī)構(gòu)兼職教師服務(wù)合同
- 二零二五年度裝飾材料采購及配送合同2篇
- 2025年度健康食品公司送餐服務(wù)協(xié)議3篇
- 二零二五年度食堂餐飲設(shè)備維護(hù)用工合同2篇
- 奔馳調(diào)研報(bào)告swot
- 中國(guó)教育史(第四版)全套教學(xué)課件
- 2024屆廣東省汕頭市高一數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析
- 采購設(shè)備檢驗(yàn)驗(yàn)收單
- 福建省泉州實(shí)驗(yàn)中學(xué)2024屆物理高一第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 公司領(lǐng)導(dǎo)班子設(shè)置方案
- 專業(yè)展覽展示設(shè)計(jì)搭建公司
- 為銅制劑正名-冠菌銅? 產(chǎn)品課件-9-7
- 具有磁場(chǎng)保鮮裝置的制冷設(shè)備的制作方法
- 2023年湖南省農(nóng)村信用社(農(nóng)村商業(yè)銀行)招聘員工筆試參考題庫附答案解析
- 七年級(jí)上英語知識(shí)梳理(牛津上海版)U1-U4
評(píng)論
0/150
提交評(píng)論