




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省聊城市東阿縣2024屆中考考前最后一卷數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1392.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.3.下列判斷正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件4.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.45.將拋物線y=A.y=-12C.y=-126.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數(shù)y=與一次函數(shù)y=bx﹣c在同一坐標系內的圖象大致是()A. B. C. D.7.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.8.我國古代《易經》一書中記載,遠古時期,人們通過在繩子上打結來記錄數(shù)量,即“結繩計數(shù)”.如圖,一位母親在從右到左依次排列的繩子上打結,滿七進一,用來記錄孩子自出生后的天數(shù),由圖可知,孩子自出生后的天數(shù)是()A.84 B.336 C.510 D.13269.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×10610.下列實數(shù)中,為無理數(shù)的是()A. B. C.﹣5 D.0.3156二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點A(3,n)在雙曲線y=上,過點A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點B,則△ABC周長的值是.12.如圖,正方形ABCD的邊長為6,E,F(xiàn)是對角線BD上的兩個動點,且EF=,連接CE,CF,則△CEF周長的最小值為_____.13.在平面直角坐標系中,點O為原點,平行于x軸的直線與拋物線L:y=ax1相交于A,B兩點(點B在第一象限),點C在AB的延長線上.(1)已知a=1,點B的縱坐標為1.如圖1,向右平移拋物線L使該拋物線過點B,與AB的延長線交于點C,AC的長為__.(1)如圖1,若BC=AB,過O,B,C三點的拋物線L3,頂點為P,開口向下,對應函數(shù)的二次項系數(shù)為a3,=__.14.規(guī)定一種新運算“*”:a*b=a-b,則方程x*2=1*x的解為________.15.如圖,ABCDE是正五邊形,已知AG=1,則FG+JH+CD=_____.16.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為__________.三、解答題(共8題,共72分)17.(8分)鐵嶺市某商貿公司以每千克40元的價格購進一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量y(千克)與每千克降價x(元)(0<x<20)之間滿足一次函數(shù)關系,其圖象如圖所示:求y與x之間的函數(shù)關系式;商貿公司要想獲利2090元,則這種干果每千克應降價多少元?該干果每千克降價多少元時,商貿公司獲利最大?最大利潤是多少元?18.(8分)先化簡,再求值:,其中.19.(8分)計算:sin30°﹣+(π﹣4)0+|﹣|.20.(8分)為給鄧小平誕辰周年獻禮,廣安市政府對城市建設進行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點米遠(即米),小亮在點測得建筑物頂部的仰角(即)為.點、、、,在同一個平面內,點、、在同一條直線上,且,問建筑物高為多少米?21.(8分)由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產品.某公司經銷一種空氣凈化器,每臺凈化器的成本價為200元.經過一段時間的銷售發(fā)現(xiàn),每月的銷售量y(臺)與銷售單價x(元)的關系為y=﹣2x+1.(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數(shù)關系式;(2)若要使每月的利潤為40000元,銷售單價應定為多少元?(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?22.(10分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數(shù)?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.23.(12分)一天晚上,李明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)24.如圖,某反比例函數(shù)圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數(shù)的解析式;若△ABC的面積為6,求直線AB的表達式.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【點睛】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關鍵.2、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.3、C【解析】
直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關定義是解題關鍵.4、C【解析】
由角平分線的定義得到∠CBE=∠ABE,再根據(jù)線段的垂直平分線的性質得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據(jù)含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.5、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設旋轉180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉180°以后的頂點為(2,1),∴旋轉180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數(shù)圖象的旋轉變換,在繞拋物線某點旋轉180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設旋轉前的的頂點為(x,y),旋轉中心為(a,b),由中心對稱的性質可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉后的函數(shù)解析式.6、C【解析】
根據(jù)二次函數(shù)的圖象找出a、b、c的正負,再結合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關系即可得出結論.【詳解】解:觀察二次函數(shù)圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數(shù)圖象與y軸交點在y軸的正半軸,c>1.∵反比例函數(shù)中k=﹣a<1,∴反比例函數(shù)圖象在第二、四象限內;∵一次函數(shù)y=bx﹣c中,b<1,﹣c<1,∴一次函數(shù)圖象經過第二、三、四象限.故選C.【點睛】本題考查了二次函數(shù)的圖象、反比例函數(shù)的圖象以及一次函數(shù)的圖象,解題的關鍵是根據(jù)二次函數(shù)的圖象找出a、b、c的正負.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)二次函數(shù)圖象找出a、b、c的正負,再結合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關系即可得出結論.7、A【解析】
根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;
B、不是軸對稱圖形,故本選項錯誤;
C、不是軸對稱圖形,故本選項錯誤;
D、不是軸對稱圖形,故本選項錯誤.
故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、C【解析】由題意滿七進一,可得該圖示為七進制數(shù),化為十進制數(shù)為:1×73+3×72+2×7+6=510,故選:C.點睛:本題考查記數(shù)的方法,注意運用七進制轉化為十進制,考查運算能力,屬于基礎題.9、B【解析】.故選B.點睛:在把一個絕對值較大的數(shù)用科學記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).10、B【解析】
根據(jù)無理數(shù)的定義解答即可.【詳解】選項A、是分數(shù),是有理數(shù);選項B、是無理數(shù);選項C、﹣5為有理數(shù);選項D、0.3156是有理數(shù);故選B.【點睛】本題考查了無理數(shù)的判定,熟知無理數(shù)是無限不循環(huán)小數(shù)是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.【解析】
先求出點A的坐標,根據(jù)點的坐標的定義得到OC=3,AC=2,再根據(jù)線段垂直平分線的性質可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.12、2+4【解析】
如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。驹斀狻咳鐖D作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。逤H=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長的最小值=2+4,故答案為:2+4.【點睛】本題考查軸對稱﹣最短問題,正方形的性質、勾股定理、平行四邊形的判定和性質等知識,解題的關鍵是學會利用軸對稱解決最短問題.13、4﹣【解析】解:(1)當a=1時,拋物線L的解析式為:y=x1,當y=1時,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移拋物線L使該拋物線過點B,∴AB=BC=1,∴AC=4;(1)如圖1,設拋物線L3與x軸的交點為G,其對稱軸與x軸交于Q,過B作BK⊥x軸于K,設OK=t,則AB=BC=1t,∴B(t,at1),根據(jù)拋物線的對稱性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),設拋物線L3的解析式為:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵該拋物線過點B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案為(1)4;(1)﹣.點睛:本題考查二次函數(shù)的圖象和性質.熟練掌握二次函數(shù)的性質是解題的關鍵.14、【解析】
根據(jù)題中的新定義化簡所求方程,求出方程的解即可.【詳解】根據(jù)題意得:x-×2=×1-,x=,解得:x=,故答案為x=.【點睛】此題的關鍵是掌握新運算規(guī)則,轉化成一元一元一次方程,再解這個一元一次方程即可.15、+1【解析】
根據(jù)對稱性可知:GJ∥BH,GB∥JH,∴四邊形JHBG是平行四邊形,∴JH=BG,同理可證:四邊形CDFB是平行四邊形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,設FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG?BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=(負根已經舍棄),∴BF=+1=,∴FG+JH+CD=+1.故答案為+1.16、.【解析】
連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【詳解】解:連接CD,
作DM⊥BC,DN⊥AC.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴DC=AB=1,四邊形DMCN是正方形,DM=.
則扇形FDE的面積是:.
∵CA=CB,∠ACB=90°,點D為AB的中點,
∴CD平分∠BCA,
又∵DM⊥BC,DN⊥AC,
∴DM=DN,
∵∠GDH=∠MDN=90°,
∴∠GDM=∠HDN,
則在△DMG和△DNH中,,
∴△DMG≌△DNH(AAS),
∴S四邊形DGCH=S四邊形DMCN=.
則陰影部分的面積是:.故答案為:.【點睛】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.三、解答題(共8題,共72分)17、(1)y=10x+100;(2)這種干果每千克應降價9元;(3)該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【解析】
(1)由待定系數(shù)法即可得到函數(shù)的解析式;(2)根據(jù)銷售量×每千克利潤=總利潤列出方程求解即可;(3)根據(jù)銷售量×每千克利潤=總利潤列出函數(shù)解析式求解即可.【詳解】(1)設y與x之間的函數(shù)關系式為:y=kx+b,把(2,120)和(4,140)代入得,,解得:,∴y與x之間的函數(shù)關系式為:y=10x+100;(2)根據(jù)題意得,(60﹣40﹣x)(10x+100)=2090,解得:x=1或x=9,∵為了讓顧客得到更大的實惠,∴x=9,答:這種干果每千克應降價9元;(3)該干果每千克降價x元,商貿公司獲得利潤是w元,根據(jù)題意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,∴w=﹣10(x﹣5)2+2250,∵a=-10,∴當x=5時,故該干果每千克降價5元時,商貿公司獲利最大,最大利潤是2250元.【點睛】本題考查的是二次函數(shù)的應用,此類題目主要考查學生分析、解決實際問題能力,又能較好地考查學生“用數(shù)學”的意識.18、,4.【解析】
先括號內通分,然后計算除法,最后代入化簡即可.【詳解】原式=.當時,原式=4.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則.19、1.【解析】分析:原式利用特殊角角的三角函數(shù)值,平方根定義,零指數(shù)冪法則,以及絕對值的代數(shù)意義化簡,計算即可求出值.詳解:原式=﹣2+1+=1.點睛:本題考查了實數(shù)的運算,熟練掌握運算法則是解答本題的關鍵.20、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長,又由坡度的定義,即可求得NF的長,繼而求得平臺MN的長;(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長米,M是AB的中點,∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺DE的長是米;建筑物GH高為米.點睛:本題考查了坡度坡角的問題以及俯角仰角的問題.解題的關鍵是根據(jù)題意構造直角三角形,將實際問題轉化為解直角三角形的問題;掌握數(shù)形結合思想與方程思想在題中的運用.21、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利潤為40000元,銷售單價應定為300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,當x=250時y=﹣2×2502+1400×250﹣200000=25000;故最高利潤為45000元,最低利潤為25000元.【解析】試題分析:(1)根據(jù)銷售利潤=每天的銷售量×(銷售單價-成本價),即可列出函數(shù)關系式;(2)令y=40000代入解析式,求出滿足條件的x的值即可;(3)根據(jù)(1)得到銷售利潤的關系式,利用配方法可求最大值.試題解析:(1)由題意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利潤為40000元,銷售單價應定為300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,當x=250時y=-2×2502+1400×250-200000=25000;故最高利潤為45000元,最低利潤為25000元.22、(1)①當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對稱性求點B的坐標,根據(jù)圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構建對稱點F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據(jù)QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據(jù)圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側,∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 208-2014小包裝蔬菜加工技術規(guī)范
- DB31/T 1337-2021公共汽(電)車時間預報信息服務質量評價規(guī)范
- DB31/T 1214-2020工業(yè)烘箱經濟運行與節(jié)能監(jiān)測
- 船用無人機與遠程監(jiān)控系統(tǒng)考核試卷
- 2024年激光醫(yī)療光纖項目投資申請報告代可行性研究報告
- 計算機二級Web考試備戰(zhàn)策略試題及答案
- 美容美發(fā)技術培訓與就業(yè)服務協(xié)議
- 抖音短視頻房地產經紀業(yè)務合作合同
- 智能健康監(jiān)測設備軟件更新與技術支持協(xié)議
- 精英私人飛機機組選拔與安全培訓協(xié)議
- 江蘇省南京師范大附屬中學2025年八下數(shù)學期末監(jiān)測試題含解析
- 2025-2030年中國夜視攝像機行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 危大工程巡視檢查記錄表 (樣表)附危大工程安全監(jiān)管及檢查要點
- 四川省2025屆高三第二次聯(lián)合測評-生物試卷+答案
- 2023版設備管理體系標準
- 廣聯(lián)達BIM智慧工地
- (統(tǒng)編版小學語文教師)語文新課標新舊對比變化
- 達希納(尼洛替尼)毒副反應及處理
- 中班語言活動《傘》
- 鋅鋁涂層技術
- 環(huán)氧地坪漆施工方案匯總
評論
0/150
提交評論