2022年金華市重點中學中考四模數(shù)學試題含解析_第1頁
2022年金華市重點中學中考四模數(shù)學試題含解析_第2頁
2022年金華市重點中學中考四模數(shù)學試題含解析_第3頁
2022年金華市重點中學中考四模數(shù)學試題含解析_第4頁
2022年金華市重點中學中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年金華市重點中學中考四模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知,則的值是A.60 B.64 C.66 D.722.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.13.為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數(shù)在150~180m1之間;④該市居民家庭年用水量的眾數(shù)約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④4.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π5.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.26.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π7.下列各式計算正確的是()A.a(chǎn)+3a=3a2 B.(–a2)3=–a6 C.a(chǎn)3·a4=a7 D.(a+b)2=a2–2ab+b28.如圖,每個小正方形的邊長為1,A、B、C是小正方形的頂點,則∠ABC的度數(shù)為()A.90° B.60° C.45° D.30°9.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°10.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.11.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數(shù)最少是()A.4 B.5 C.6 D.712.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.14.與是位似圖形,且對應面積比為4:9,則與的位似比為______.15.點A(1,2),B(n,2)都在拋物線y=x2﹣4x+m上,則n=_____.16.如圖,⊙M的半徑為2,圓心M(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為_____.17.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.18.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)20.(6分)珠海某企業(yè)接到加工“無人船”某零件5000個的任務.在加工完500個后,改進了技術,每天加工的零件數(shù)量是原來的1.5倍,整個加工過程共用了35天完成.求技術改進后每天加工零件的數(shù)量.21.(6分)如圖所示,AC=AE,∠1=∠2,AB=AD.求證:BC=DE.22.(8分)如圖,P是半圓弧上一動點,連接PA、PB,過圓心O作交PA于點C,連接已知,設O,C兩點間的距離為xcm,B,C兩點間的距離為ycm.小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.下面是小東的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012336說明:補全表格時相關數(shù)據(jù)保留一位小數(shù)建立直角坐標系,描出以補全后的表中各對應值為坐標的點,畫出該函數(shù)的圖象;結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長C的取值范圍是______.23.(8分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據(jù)實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?24.(10分)在平面直角坐標系中,某個函數(shù)圖象上任意兩點的坐標分別為(﹣t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<﹣t的部分沿直線y=y(tǒng)1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y(tǒng)2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.例如:如圖,當t=1時,原函數(shù)y=x,圖象G所對應的函數(shù)關系式為y=.(1)當t=時,原函數(shù)為y=x+1,圖象G與坐標軸的交點坐標是.(2)當t=時,原函數(shù)為y=x2﹣2x①圖象G所對應的函數(shù)值y隨x的增大而減小時,x的取值范圍是.②圖象G所對應的函數(shù)是否有最大值,如果有,請求出最大值;如果沒有,請說明理由.(3)對應函數(shù)y=x2﹣2nx+n2﹣3(n為常數(shù)).①n=﹣1時,若圖象G與直線y=2恰好有兩個交點,求t的取值范圍.②當t=2時,若圖象G在n2﹣2≤x≤n2﹣1上的函數(shù)值y隨x的增大而減小,直接寫出n的取值范圍.25.(10分)在平面直角坐標系xOy中,拋物線y=12x(1)求直線BC的解析式;(2)點D在拋物線上,且點D的橫坐標為1.將拋物線在點A,D之間的部分(包含點A,D)記為圖象G,若圖象G向下平移t(t>0)個單位后與直線BC只有一個公共點,求t的取值范圍.26.(12分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.27.(12分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態(tài)化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數(shù)達2678個,志愿者人數(shù)達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調(diào)查小組根據(jù)平臺數(shù)據(jù)進行了抽樣問卷調(diào)查,過程如下:(1)收集、整理數(shù)據(jù):從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數(shù)據(jù)整理在如下的頻數(shù)分布表中,請你補充其中的數(shù)據(jù):志愿服務時間ABCDEF頻數(shù)34107(2)描述數(shù)據(jù):根據(jù)上面的頻數(shù)分布表,小明繪制了如下的頻數(shù)直方圖(圖1),請將空缺的部分補充完整;(3)分析數(shù)據(jù):①調(diào)查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統(tǒng)計圖.請你對比八九年級的統(tǒng)計圖,寫出一個結(jié)論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據(jù)上述信息估計九年級200名團員中參加此次義務勞動的人數(shù)約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

將代入原式,計算可得.【詳解】解:當時,原式,故選A.【點睛】本題主要考查分式的加減法,解題的關鍵是熟練掌握完全平方公式.2、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).3、B【解析】

利用條形統(tǒng)計圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.【詳解】①由條形統(tǒng)計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),

×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;

②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),

∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;

③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),

∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;

④該市居民家庭年用水量為110m1有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m1,因此正確,

故選B.【點睛】此題主要考查了頻數(shù)分布直方圖以及中位數(shù)和眾數(shù)的定義,正確利用條形統(tǒng)計圖獲取正確信息是解題關鍵.4、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.5、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.6、B【解析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.7、C【解析】

根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關鍵.8、C【解析】試題分析:根據(jù)勾股定理即可得到AB,BC,AC的長度,進行判斷即可.試題解析:連接AC,如圖:根據(jù)勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故選C.考點:勾股定理.9、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.10、A【解析】

根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考??碱}型.11、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數(shù)所以圖中的小正方體最少2+4=1.故選C.12、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、14【解析】

根據(jù)菱形的性質(zhì),先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點睛】此題考查了菱形的性質(zhì)及面積求法,難度不大.14、2:1【解析】

由相似三角形的面積比等于相似比的平方,即可求得與的位似比.【詳解】解與是位似圖形,且對應面積比為4:9,與的相似比為2:1,故答案為:2:1.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.15、1【解析】

根據(jù)題意可以求得m的值和n的值,由A的坐標,可確定B的坐標,進而可以得到n的值.【詳解】:∵點A(1,2),B(n,2)都在拋物線y=x2-4x+m上,

∴2=1-4+m2=n2-4n+m,

解得【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數(shù)的性質(zhì)求解.16、6【解析】

點P在以O為圓心OA為半徑的圓上,P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,根據(jù)條件求出AO即可求解;【詳解】解:點P在以O為圓心OA為半徑的圓上,∴P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,∵⊙M的半徑為2,圓心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案為6;【點睛】本題考查圓與圓的位置關系;能夠?qū)栴}轉(zhuǎn)化為兩圓外切時AB最小是解題的關鍵.17、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,坐標與圖形的性質(zhì),解題的關鍵是學會添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考??碱}型.注意:距離都是非負數(shù),而坐標可以是負數(shù),在由距離求坐標時,需要加上恰當?shù)姆?18、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯(lián)立兩直線解析式得:,解得:,即交點坐標為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數(shù)圖象與幾何變換.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、答案見解析【解析】

連接OP,作線段OP的垂直平分線MN交OP于點K,以點K為圓心OK為半徑作⊙K交⊙O于點A,A′,作直線PA,PA′,直線PA,PA′即為所求.【詳解】解:連接OP,作線段OP的垂直平分線MN交OP于點K,以點K為圓心OK為半徑作⊙K交⊙O于點A,A′,作直線PA,PA′,直線PA,PA′即為所求.【點睛】本題考查作圖?復雜作圖,解題的關鍵是靈活運用所學知識解決問題.20、技術改進后每天加工1個零件.【解析】分析:設技術改進前每天加工x個零件,則改進后每天加工1.5x個,根據(jù)題意列出分式方程,從而得出方程的解并進行檢驗得出答案.詳解:設技術改進前每天加工x個零件,則改進后每天加工1.5x個,根據(jù)題意可得,解得x=100,經(jīng)檢驗x=100是原方程的解,則改進后每天加工1.答:技術改進后每天加工1個零件.點睛:本題主要考查的是分式方程的應用,屬于基礎題型.根據(jù)題意得出等量關系是解題的關鍵,最后我們還必須要對方程的解進行檢驗.21、證明見解析.【解析】試題分析:由可得則可證明,因此可得試題解析:即,在和中,考點:三角形全等的判定.22、(1)(2)詳見解析;(3).【解析】

(1)動手操作,細心測量即可求解;(2)利用描點、連線畫出函數(shù)圖象即可;(3)根據(jù)觀察找到函數(shù)值的取值范圍,即可求得△OBC周長C的取值范圍.【詳解】經(jīng)過測量,時,y值為根據(jù)題意,畫出函數(shù)圖象如下圖:根據(jù)圖象,可以發(fā)現(xiàn),y的取值范圍為:,,故答案為.【點睛】本題通過學生測量、繪制函數(shù),考查了學生的動手能力,由觀察函數(shù)圖象,確定函數(shù)的最值,讓學生進一步了解函數(shù)的意義.23、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解析】

(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據(jù)購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數(shù),∴m最大可取1.答:這所中學最多可以購買籃球1個.【點睛】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及不等關系,難度一般.24、(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對應的函數(shù)有最大值為;(3)①;②n≤或n≥.【解析】

(1)根據(jù)題意分別求出翻轉(zhuǎn)之后部分的表達式及自變量的取值范圍,將y=0代入,求出x值,即可求出圖象G與坐標軸的交點坐標;(2)畫出函數(shù)草圖,求出翻轉(zhuǎn)點和函數(shù)頂點的坐標,①根據(jù)圖象的增減性可求出y隨x的增大而減小時,x的取值范圍,②根據(jù)圖象很容易計算出函數(shù)最大值;(3)①將n=﹣1代入到函數(shù)中求出原函數(shù)的表達式,計算y=2時,x的值.據(jù)(2)中的圖象,函數(shù)與y=2恰好有兩個交點時t大于右邊交點的橫坐標且-t大于左邊交點的橫坐標,據(jù)此求解.②畫出函數(shù)草圖,分別計算函數(shù)左邊的翻轉(zhuǎn)點A,右邊的翻轉(zhuǎn)點C,函數(shù)的頂點B的橫坐標(可用含n的代數(shù)式表示),根據(jù)函數(shù)草圖以及題意列出關于n的不等式求解即可.【詳解】(1)當x=時,y=,當x≥時,翻折后函數(shù)的表達式為:y=﹣x+b,將點(,)坐標代入上式并解得:翻折后函數(shù)的表達式為:y=﹣x+2,當y=0時,x=2,即函數(shù)與x軸交點坐標為:(2,0);同理沿x=﹣翻折后當時函數(shù)的表達式為:y=﹣x,函數(shù)與x軸交點坐標為:(0,0),因為所以舍去.故答案為:(2,0);(2)當t=時,由函數(shù)為y=x2﹣2x構(gòu)建的新函數(shù)G的圖象,如下圖所示:點A、B分別是t=﹣、t=的兩個翻折點,點C是拋物線原頂點,則點A、B、C的橫坐標分別為﹣、1、,①函數(shù)值y隨x的增大而減小時,﹣≤x≤1或x≥,故答案為:﹣≤x≤1或x≥;②函數(shù)在點A處取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:圖象G所對應的函數(shù)有最大值為;(3)n=﹣1時,y=x2+2x﹣2,①參考(2)中的圖象知:當y=2時,y=x2+2x﹣2=2,解得:x=﹣1±,若圖象G與直線y=2恰好有兩個交點,則t>﹣1且-t>,所以;②函數(shù)的對稱軸為:x=n,令y=x2﹣2nx+n2﹣3=0,則x=n±,當t=2時,點A、B、C的橫坐標分別為:﹣2,n,2,當x=n在y軸左側(cè)時,(n≤0),此時原函數(shù)與x軸的交點坐標(n+,0)在x=2的左側(cè),如下圖所示,則函數(shù)在AB段和點C右側(cè),故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,解得:n≤;當x=n在y軸右側(cè)時,(n≥0),同理可得:n≥;綜上:n≤或n≥.【點睛】在做本題時,可先根據(jù)題意分別畫出函數(shù)的草圖,根據(jù)草圖進行分析更加直觀.在做第(1)問時,需注意翻轉(zhuǎn)后的函數(shù)是分段函數(shù),所以對最終的解要進行分析,排除掉自變量之外的解;(2)根據(jù)草圖很直觀的便可求得;(3)①需注意圖象G與直線y=2恰好有兩個交點,多于2個交點的要排除;②根據(jù)草圖和增減性,列出不等式,求解即可.25、(1)y=12x+1【解析】試題分析:(1)首先根據(jù)拋物線y=12x2-x+2求出與y軸交于點A,頂點為點B的坐標,然后求出點A關于拋物線的對稱軸對稱點C的坐標,設設直線BC的解析式為y=kx+b.代入點B,點C的坐標,然后解方程組即可;(2)求出點D、E、F的坐標,設點A平移后的對應點為點A',點D平移后的對應點為點D'.當圖象G向下平移至點A'與點E重合時,點D'在直線BC上方,此時t=1;當圖象G向下平移至點D'試題解析:解:(1)∵拋物線y=12x∴點A的坐標為(0,2).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論