版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省顏錫祺中學2024屆數(shù)學高一下期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.干支紀年法是中國歷法上自古以來就一直使用的紀年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、廢、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按順序配對,周而復始,循環(huán)記錄.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,則數(shù)學王子高斯出生的1777年是干支紀年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年2.數(shù)列,,,,,,的一個通項公式為()A. B.C. D.3.向正方形ABCD內任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.4.如圖所示,已知以正方體所有面的中心為頂點的多面體的體積為,則該正方體的外接球的表面積為()A. B. C. D.5.已知向量,滿足且,若向量在向量方向上的投影為,則()A. B. C. D.6.如圖所示,程序框圖算法流程圖的輸出結果是A. B. C. D.7.無論取何實數(shù),直線恒過一定點,則該定點坐標為()A. B. C. D.8.已知,,,則的最小值為A. B. C. D.49.《九章算術》中有這樣一個問題:今有竹九節(jié),欲均減容之(其意為:使容量均勻遞減),上三節(jié)容四升,下三節(jié)容二升,中三節(jié)容幾何?()A.二升 B.三升 C.四升 D.五升10.已知數(shù)列1,,,9是等差數(shù)列,數(shù)列1,,,,9是等比數(shù)列,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設數(shù)列是首項為0的遞增數(shù)列,函數(shù)滿足:對于任意的實數(shù),總有兩個不同的根,則的通項公式是________.12.在等比數(shù)列中,,,則________.13.項數(shù)為的等差數(shù)列,若奇數(shù)項之和為88,偶數(shù)項之和為77,則實數(shù)的值為_____.14.已知兩點,則線段的垂直平分線的方程為_________.15.如果函數(shù)的圖象關于直線對稱,那么該函數(shù)在上的最小值為_______________.16.某幾何體是由一個正方體去掉一個三棱柱所得,其三視圖如圖所示.如果網(wǎng)格紙上小正方形的邊長為1,那么該幾何體的體積是___三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知是公差不為0的等差數(shù)列,,,成等比數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,證明:.18.已知數(shù)列為等差數(shù)列,,,數(shù)列為等比數(shù)列,,公比.(1)求數(shù)列、的通項公式;(2)求數(shù)列的前n項和.19.已知函數(shù)(其中).(1)當時,求不等式的解集;(2)若關于的不等式恒成立,求的取值范圍.20.已知函數(shù)。(1)若,求不等式的解集;(2)若,且,求的最小值。21.已知數(shù)列滿足,數(shù)列滿足,其中為的前項和,且(1)求數(shù)列和的通項公式(2)求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,按照這個規(guī)律進行推理,即可得到結果.【詳解】由題意,天干是以10為公差的等差數(shù)列,地支是以12為公差的等差數(shù)列,1994年是甲戌年,則1777的天干為丁,地支為酉,故選:C.【點睛】本題主要考查了等差數(shù)列的定義及等差數(shù)列的性質的應用,其中解答中認真審題,合理利用等差數(shù)列的定義,以及等差數(shù)列的性質求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】
首先注意到數(shù)列的奇數(shù)項為負,偶數(shù)項為正,其次數(shù)列各項絕對值構成一個以1為首項,以2為公差的等差數(shù)列,從而易求出其通項公式.【詳解】∵數(shù)列{an}各項值為,,,,,,∴各項絕對值構成一個以1為首項,以2為公差的等差數(shù)列,∴|an|=2n﹣1又∵數(shù)列的奇數(shù)項為負,偶數(shù)項為正,∴an=(﹣1)n(2n﹣1).故選:C.【點睛】本題給出數(shù)列的前幾項,猜想數(shù)列的通項,挖掘其規(guī)律是關鍵.解題時應注意數(shù)列的奇數(shù)項為負,偶數(shù)項為正,否則會錯.3、C【解析】
由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關鍵是明確概率模型,屬于基礎題.4、A【解析】
設正方體的棱長為,則中間四棱錐的底面邊長為,由已知多面體的體積求解,得到正方體外接球的半徑,則外接球的表面積可求.【詳解】設正方體的棱長為,則中間四棱錐的底面邊長為,多面體的體積為,即.正方體的對角線長為.則正方體的外接球的半徑為.表面積為.故選:.【點睛】本題考查幾何體的體積的求法,考查空間想象能力以及計算能力,是基礎題.5、A【解析】由,即,所以,由向量在向量方向上的投影為,則,即,所以,故選A.6、D【解析】
模擬程序圖框的運行過程,得出當時,不再運行循環(huán)體,直接輸出S值.【詳解】模擬程序圖框的運行過程,得S=0,n=2,n<8滿足條件,進入循環(huán):S=滿足條件,進入循環(huán):進入循環(huán):不滿足判斷框的條件,進而輸出s值,該程序運行后輸出的是計算:.故選D.【點睛】本題考查了程序框圖的應用問題,是基礎題目.根據(jù)程序框圖(或偽代碼)寫程序的運行結果,是算法這一模塊最重要的題型,其處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計算的類型,又要分析出參與計算的數(shù)據(jù)(如果參與運算的數(shù)據(jù)比較多,也可使用表格對數(shù)據(jù)進行分析管理)?②建立數(shù)學模型,根據(jù)第一步分析的結果,選擇恰當?shù)臄?shù)學模型③解模.7、A【解析】
通過整理直線的形式,可求得所過的定點.【詳解】直線可整理為,當,解得,無論為何值,直線總過定點.故選A.【點睛】本題考查了直線過定點問題,屬于基礎題型.8、C【解析】
化簡條件得,化簡,利用基本不等式,即可求解,得到答案.【詳解】由題意,知,可得,則,當且僅當時,即時取得等號,所以,即的最小值為,故選C.【點睛】本題主要考查了基本不等式的應用,其中解答中熟記基本不等式的使用條件:一正、二定、三相等是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、B【解析】
由題意可得,上、中、下三節(jié)的容量成等差數(shù)列.再利用等差數(shù)列的性質,求出中三節(jié)容量,即可得到答案.【詳解】由題意,上、中、下三節(jié)的容量成等差數(shù)列,上三節(jié)容四升,下三節(jié)容二升,則中三節(jié)容量為,故選B.【點睛】本題主要考查了等差數(shù)列的性質的應用,其中解答中熟記等差數(shù)列的等差中項公式是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.10、B【解析】
根據(jù)等差數(shù)列和等比數(shù)列性質可分別求得,,代入即可得到結果.【詳解】由成等差數(shù)列得:由成等比數(shù)列得:,又與同號本題正確選項:【點睛】本題考查等差數(shù)列、等比數(shù)列性質的應用,易錯點是忽略等比數(shù)列奇數(shù)項符號相同的特點,從而造成增根.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用三角函數(shù)的圖象與性質、誘導公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項和公式,即可求解.【詳解】由題意,因為,當時,,又因為對任意的實數(shù),總有兩個不同的根,所以,所以,又,對任意的實數(shù),總有兩個不同的根,所以,又,對任意的實數(shù),總有兩個不同的根,所以,由此可得,所以,所以.故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質的應用,以及誘導公式,數(shù)列的遞推關系式和“累加”方法等知識的綜合應用,著重考查了推理與運算能力,屬于中檔試題.12、【解析】
根據(jù)等比數(shù)列中,,得到公比,再寫出和,從而得到.【詳解】因為為等比數(shù)列,,,所以,所以,,所以.故答案為:.【點睛】本題考查等比數(shù)列通項公式中的基本量計算,屬于簡單題.13、7【解析】
奇數(shù)項和偶數(shù)項相減得到和,故,代入公式計算得到答案.【詳解】由題意知:,前式減后式得到:,后式減前式得到故:解得故答案為:7【點睛】本題考查了等差數(shù)列的奇數(shù)項和與偶數(shù)項和關系,通過變換得到是解題的關鍵.14、【解析】
求出直線的斜率和線段的中點,利用兩直線垂直時斜率之積為可得出線段的垂直平分線的斜率,然后利用點斜式可寫出中垂線的方程.【詳解】線段的中點坐標為,直線的斜率為,所以,線段的垂直平分線的斜率為,其方程為,即.故答案為.【點睛】本題考查線段垂直平分線方程的求解,有如下兩種方法求解:(1)求出中垂線的斜率和線段的中點,利用點斜式得出中垂線所在直線方程;(2)設動點坐標為,利用動點到線段兩端點的距離相等列式求出動點的軌跡方程,即可作為中垂線所在直線的方程.15、【解析】
根據(jù)三角公式得輔助角公式,結合三角函數(shù)的對稱性求出值,再利用的取值范圍求出函數(shù)的最小值.【詳解】解:,令,則,則.因為函數(shù)的圖象關于直線對稱,所以,即,則,平方得.整理可得,則,所以函數(shù).因為,所以,當時,即,函數(shù)有最小值為.故答案為:.【點睛】本題主要考查三角函數(shù)最值求解,結合輔助角公式和利用三角函數(shù)的對稱性建立方程是解決本題的關鍵.16、6【解析】
先作出幾何體圖形,再根據(jù)幾何體的體積等于正方體的體積減去三棱柱的體積計算.【詳解】幾何體如圖所示:去掉的三棱柱的高為2,底面面積是正方體底面積的,所以三棱柱的體積:所以幾何體的體積:【點睛】本題考查三視圖與幾何體的體積.關鍵是作出幾何體的圖形,方法:先作出正方體的圖形,再根據(jù)三視圖“切”去多余部分.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)由題意列式求得數(shù)列的首項和公差,然后代入等差數(shù)列的通項公式得答案.
(2)求出數(shù)列的通項,利用裂項相消法求出數(shù)列的前項和得答案.【詳解】(1)差數(shù)列中,,成等比數(shù)列有:即,得所以又,即,.所以.(2)所以.所以所以【點睛】本題考查了等差數(shù)列的通項公式,等比數(shù)列的性質,裂項相消法求數(shù)列的前項和,是中檔題.18、(1),.(2)【解析】
(1)先求出等差數(shù)列的首項和公差,求出等比數(shù)列的首項即得數(shù)列、的通項公式;(2)利用分組求和求數(shù)列的前n項和.【詳解】(1)由題得.由題得.(2)由題得,所以數(shù)列的前n項和.【點睛】本題主要考查等差等比數(shù)列的通項的基本量的計算,考查數(shù)列通項的求法和求和,意在考查學生對這些知識的理解掌握水平.19、(1)或;(2).【解析】
(1)先由,將不等式化為,直接求解,即可得出結果;(2)先由題意得到恒成立,根據(jù)含絕對值不等式的性質定理,得到,從而可求出結果.【詳解】(1)當時,求不等式,即為,所以,即或,原不等式的解集為或.(2)不等式,即為,即關于的不等式恒成立.而,所以,解得或,解得或.所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記不等式的解法,以及絕對值不等式的性質定理即可,屬于??碱}型.20、(1)答案不唯一,具體見解析(2)【解析】
(1)由,對分類討論,判斷與的大小,確定不等式的解集.(2)利用把用表示,代入表示為的函數(shù),利用基本不等式可求.【詳解】解:(1)因為,所以,由,得,即,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為;(2)因為,由已知,可得,∴,∵,∴,∴,當且僅當時取等號,所以的最小值為。【點睛】本題考查一元二次不等式的解法,基
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公環(huán)境下的健康與舒適
- 未來的工作環(huán)境科技與舒適性的平衡
- 現(xiàn)代辦公環(huán)境下的智能配送技術應用實例
- 2024秋七年級數(shù)學上冊 第4章 一元一次方程4.2 解一元一次方程 3用合并同類項法解方程說課稿(新版)蘇科版001
- Unit 4 History And Traditions Reading for Writing 說課稿-2023-2024學年高中英語人教版(2019)必修第二冊
- Unit 4 Friends Forever Understanding ideas click for a friend 說課稿-2024-2025學年高中英語外研版必修第一冊
- 2024年五年級英語下冊 Unit 2 How do you come to school第1課時說課稿 譯林牛津版
- 6 魯濱遜漂流記(節(jié)選)(說課稿)-2023-2024學年語文六年級下冊統(tǒng)編版
- 16《夏天里的成長》(說課稿)2024-2025學年部編版語文六年級上冊001
- Unit 2 Wildlife Protection Reading and Thinking Language Focus 說課稿-2024-2025學年高一上學期英語人教版(2019)必修第二冊001
- 時政述評培訓課件
- 2022屆高三體育特長生家長會
- 不對外供貨協(xié)議
- 2024屆高考作文主題訓練:時評類(含解析)
- 260噸汽車吊地基承載力驗算
- 公司新員工三級安全教育培訓(車間級)
- 北師大版高三數(shù)學選修4-6初等數(shù)論初步全冊課件【完整版】
- 老子道德經(jīng)全文講解學習課件
- 企業(yè)更名通知函
- 經(jīng)大量臨床實驗證明,空氣負離子能有效治療心腦血管疾病
- GB/T 12618-1990開口型扁圓頭抽芯鉚釘
評論
0/150
提交評論