版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年中衛(wèi)市重點(diǎn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.直線2x+y+4=0與圓x+22+y+32=5A.255 B.4552.已知一組數(shù)1,1,2,3,5,8,,21,34,55,按這組數(shù)的規(guī)律,則應(yīng)為()A.11 B.12 C.13 D.143.若過點(diǎn),的直線與直線平行,則的值為()A.1 B.4 C.1或3 D.1或44.若,下列不等式一定成立的是()A. B. C. D.5.在中,a,b,c分別為角A,B,C的對邊,若,,,則解的個(gè)數(shù)是()A.0 B.1 C.2 D.不確定6.已知點(diǎn)均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.7.等比數(shù)列的前項(xiàng)和為,若,則公比()A. B. C. D.8.直線的傾斜角為A. B. C. D.9.已知各項(xiàng)均不為零的數(shù)列,定義向量,,.下列命題中真命題是()A.若對任意的,都有成立,則數(shù)列是等差數(shù)列B.若對任意的,都有成立,則數(shù)列是等比數(shù)列C.若對任意的,都有成立,則數(shù)列是等差數(shù)列D.若對任意的,都有成立,則數(shù)列是等比數(shù)列10.設(shè),若,則數(shù)列是()A.遞增數(shù)列 B.遞減數(shù)列C.奇數(shù)項(xiàng)遞增,偶數(shù)項(xiàng)遞減的數(shù)列 D.偶數(shù)項(xiàng)遞增,奇數(shù)項(xiàng)遞減的數(shù)列二、填空題:本大題共6小題,每小題5分,共30分。11.某產(chǎn)品分為優(yōu)質(zhì)品、合格品、次品三個(gè)等級,生產(chǎn)中出現(xiàn)合格品的概率為0.25,出現(xiàn)次品的概率為0.03,在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為__________.12.若實(shí)數(shù)滿足,,則__________.13.已知圓C:,點(diǎn)M的坐標(biāo)為(2,4),過點(diǎn)N(4,0)作直線交圓C于A,B兩點(diǎn),則的最小值為________14.我國高鐵發(fā)展迅速,技術(shù)先進(jìn).經(jīng)統(tǒng)計(jì),在經(jīng)停某站的高鐵列車中,有10個(gè)車次的正點(diǎn)率為0.97,有20個(gè)車次的正點(diǎn)率為0.98,有10個(gè)車次的正點(diǎn)率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點(diǎn)率的估計(jì)值為___________.15.已知關(guān)于的不等式的解集為,則__________.16.利用直線與圓的有關(guān)知識求函數(shù)的最小值為_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.為了了解某省各景區(qū)在大眾中的熟知度,隨機(jī)從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個(gè)國家級旅游景區(qū)?”,統(tǒng)計(jì)結(jié)果如下表所示:組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);(3)在(2)中抽取的人中隨機(jī)抽取人,求所抽取的人中恰好沒有年齡段在的概率18.已知.(1)若對任意的,不等式上恒成立,求實(shí)數(shù)的取值范圍;(2)解關(guān)于的不等式.19.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.20.已知是復(fù)數(shù),與均為實(shí)數(shù),且復(fù)數(shù)在復(fù)平面上對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)的取值范圍.21.已知,,,求:的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
先求出圓心到直線的距離d,然后根據(jù)圓的弦長公式l=2r【詳解】由題意得,圓x+22+y+32=5圓心-2,-3到直線2x+y+4=0的距離為d=|2×(-2)-3+4|∴MN=2故選C.【點(diǎn)睛】求圓的弦長有兩種方法:一是求出直線和圓的交點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式求解;二是利用幾何法求解,即求出圓心到直線的距離,在由半徑、弦心距和半弦長構(gòu)成的直角三角形中運(yùn)用勾股定理求解,此時(shí)不要忘了求出的是半弦長.在具體的求解中一般利用幾何法,以減少運(yùn)算、增強(qiáng)解題的直觀性.2、C【解析】
易得從第三項(xiàng)開始數(shù)列的每項(xiàng)都為前兩項(xiàng)之和,再求解即可.【詳解】易得從第三項(xiàng)開始數(shù)列的每項(xiàng)都為前兩項(xiàng)之和,故.故選:C【點(diǎn)睛】該數(shù)列為“斐波那契數(shù)列”,從第三項(xiàng)開始數(shù)列的每項(xiàng)都為前兩項(xiàng)之和,屬于基礎(chǔ)題.3、A【解析】
首先設(shè)一條與已知直線平行的直線,點(diǎn),代入直線方程即可求出的值.【詳解】設(shè)與直線平行的直線:,點(diǎn),代入直線方程,有.故選:A.【點(diǎn)睛】本題考查了利用直線的平行關(guān)系求參數(shù),屬于基礎(chǔ)題.注意直線與直線在時(shí)相互平行.4、D【解析】
通過反例、作差法、不等式的性質(zhì)可依次判斷各個(gè)選項(xiàng)即可.【詳解】若,,則,錯(cuò)誤;,則,錯(cuò)誤;,,則,錯(cuò)誤;,則等價(jià)于,成立,正確.本題正確選項(xiàng):【點(diǎn)睛】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.5、B【解析】
由題得,即得B<A,即得三角形只有一個(gè)解.【詳解】由正弦定理得,所以B只有一解,所以三角形只有一解.故選:B【點(diǎn)睛】本題主要考查正弦定理判定三角形的個(gè)數(shù),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.6、A【解析】
設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.由此可計(jì)算球半徑.【詳解】如圖,設(shè)是的外心,則三棱錐體積最大時(shí),平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【點(diǎn)睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.7、A【解析】
將轉(zhuǎn)化為關(guān)于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點(diǎn)睛】本題考查等比數(shù)列的基本運(yùn)算,等比數(shù)列中共有五個(gè)量,其中是基本量,這五個(gè)量可“知三求二”,求解的實(shí)質(zhì)是解方程或解方程組.8、D【解析】
把直線方程的一般式方程化為斜截式方程,求出斜率,根據(jù)斜率與傾斜角的關(guān)系,求出傾斜角.【詳解】,設(shè)直線的傾斜角為,,故本題選D.【點(diǎn)睛】本題考查了直線方程之間的轉(zhuǎn)化、利用斜率求直線的傾斜角問題.9、A【解析】
根據(jù)向量平行的坐標(biāo)表示,得到,利用累乘法,求得,從而可作出判定,得到答案.【詳解】由題意知,向量,,,當(dāng)時(shí),可得,即,所以,所以數(shù)列表示首項(xiàng)為,公差為的等差數(shù)列.當(dāng),可得,即,所以,所以數(shù)列既不是等差數(shù)列,也不是等比數(shù)列.故選A.【點(diǎn)睛】本題主要考查了向量的平行關(guān)系的坐標(biāo)表示,等差數(shù)列的定義,以及“累乘法”求解通項(xiàng)公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)題意,由三角函數(shù)的性質(zhì)分析可得,進(jìn)而可得函數(shù)為減函數(shù),結(jié)合函數(shù)與數(shù)列的關(guān)系分析可得答案?!驹斀狻扛鶕?jù)題意,,則,指數(shù)函數(shù)為減函數(shù)即即即即,數(shù)列是奇數(shù)項(xiàng)遞增,偶數(shù)項(xiàng)遞減的數(shù)列,故選:C.【點(diǎn)睛】本題涉及數(shù)列的函數(shù)特性,利用函數(shù)單調(diào)性,通過函數(shù)的大小,反推變量的大小,是一道中檔題目。二、填空題:本大題共6小題,每小題5分,共30分。11、0.72【解析】
根據(jù)對立事件的概率公式即可求解.【詳解】由題意,在該產(chǎn)品中任抽一件,“抽到優(yōu)質(zhì)品”與“抽到合格品或次品”是對立事件,所以在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為.故答案為【點(diǎn)睛】本題主要考查對立事件的概率公式,熟記對立事件的概念及概率計(jì)算公式即可求解,屬于基礎(chǔ)題型.12、【解析】
由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點(diǎn)睛】本題考查反正弦函數(shù),解題時(shí)注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.13、8【解析】
先將所求化為M到AB中點(diǎn)的距離的最小值問題,再求得AB中點(diǎn)的軌跡為圓,利用點(diǎn)M到圓心的距離減去半徑求得結(jié)果.【詳解】設(shè)A、B中點(diǎn)為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點(diǎn)M到P的距離減去半徑,又,所以,故答案為8【點(diǎn)睛】本題考查了向量的加法運(yùn)算,考查了求圓中弦中點(diǎn)軌跡的幾何方法,考查了點(diǎn)點(diǎn)距公式,考查了分析解決問題的能力,屬于中檔題.14、1.98.【解析】
本題考查通過統(tǒng)計(jì)數(shù)據(jù)進(jìn)行概率的估計(jì),采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點(diǎn)數(shù)約為,其中高鐵個(gè)數(shù)為11+21+11=41,所以該站所有高鐵平均正點(diǎn)率約為.【點(diǎn)睛】本題考點(diǎn)為概率統(tǒng)計(jì),滲透了數(shù)據(jù)處理和數(shù)學(xué)運(yùn)算素養(yǎng).側(cè)重統(tǒng)計(jì)數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計(jì)數(shù)據(jù),估算出正點(diǎn)列車數(shù)量與列車總數(shù)的比值.15、-2【解析】為方程兩根,因此16、【解析】
令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉(zhuǎn)化為z==,表示上半個(gè)圓上的點(diǎn)到直線的距離的最小值的5倍,即故答案為3【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,,;(2)分邊抽取2,3,1人;(3).【解析】
(1)根據(jù)數(shù)據(jù)表和頻率分布直方圖可計(jì)算得到第組的人數(shù)和頻率,從而可得總?cè)藬?shù);根據(jù)總數(shù)、頻率和頻數(shù)的關(guān)系,可分別計(jì)算得到所求結(jié)果;(2)首先確定第組的總?cè)藬?shù),根據(jù)分層抽樣原則計(jì)算即可得到結(jié)果;(3)首先計(jì)算得到基本事件總數(shù);再計(jì)算出恰好沒有年齡段在包含的基本事件個(gè)數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】(1)第組的人數(shù)為:人,第組的頻率為:第一組的頻率為第一組的人數(shù)為:第二組的頻率為第二組的人數(shù)為:第三組的頻率為第三組的人數(shù)為:第五組的頻率為第五組的人數(shù)為:(2)第組的總?cè)藬?shù)為:人第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人(3)在(2)中抽取的人中隨機(jī)抽取人,基本事件總數(shù)為:所抽取的人中恰好沒有年齡段在包含的基本事件個(gè)數(shù)為:所抽取的人中恰好沒有年齡段在的概率:【點(diǎn)睛】本題考查利用頻率分布直方圖計(jì)算總數(shù)、頻數(shù)和頻率、分層抽樣基本方法的應(yīng)用、古典概型計(jì)算概率問題;關(guān)鍵是熟練掌握頻率分布直方圖的相關(guān)知識,能夠通過頻率分布直方圖準(zhǔn)確計(jì)算出各組數(shù)據(jù)對應(yīng)的頻率.18、(1);(2)見解析.【解析】
(1)參變分離后可得在上恒成立,利用基本不等式可求的最小值,從而得到參數(shù)的取值范圍.(2)原不等式可化為,就對應(yīng)方程的兩根的大小關(guān)系分類討論可得不等式的解集.【詳解】(1)對任意的,恒成立即恒成立.因?yàn)楫?dāng)時(shí),(當(dāng)且僅當(dāng)時(shí)等號成立),所以即.(2)不等式,即,①當(dāng)即時(shí),;②當(dāng)即時(shí),;③當(dāng)即時(shí),.綜上:當(dāng)時(shí),不等式解集為;當(dāng)時(shí),不等式解集為;當(dāng)時(shí),不等式解集為.【點(diǎn)睛】含參數(shù)的一元二次不等式,其一般的解法是:先考慮對應(yīng)的二次函數(shù)的開口方向,再考慮其判別式的符號,其次在判別式大于零的條件下比較兩根的大小,最后根據(jù)不等號的方向和開口方向得到不等式的解.一元二次不等式的恒成立問題,參變分離后可以轉(zhuǎn)化為函數(shù)的最值進(jìn)行討論,后者可利用基本不等式來求.19、(Ⅰ)(Ⅱ)【解析】
(1)本題是一個(gè)古典概型,可知基本事件共12個(gè),方程當(dāng)時(shí)有實(shí)根的充要條件為,滿足條件的事件中包含9個(gè)基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個(gè)幾何概型,試驗(yàn)的全部約束所構(gòu)成的區(qū)域?yàn)?,.?gòu)成事件的區(qū)域?yàn)?,,.根?jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實(shí)數(shù)根”.當(dāng)時(shí),方程有實(shí)數(shù)根的充要條件為.(Ⅰ)基本事件共12個(gè):.其中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值.事件中包含9個(gè)基本事件,事件發(fā)生的概率為.(Ⅱ)實(shí)驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)椋畼?gòu)成事件的區(qū)域?yàn)?,所求的概率為【點(diǎn)睛】本題考查幾何概型和古典概型,放在一起的目的是把兩種概
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度商務(wù)代理及招商合同3篇
- 2025年度柴油發(fā)電機(jī)組研發(fā)與市場推廣合同4篇
- 二零二五版公司分立資產(chǎn)免賠責(zé)任合同書3篇
- 2025年度二零二五年度門面租賃押金退還及結(jié)算合同
- 2025年度跨區(qū)域銷售人員聘用與激勵(lì)合同
- 二零二五年度林業(yè)用地流轉(zhuǎn)合同示范文本(林業(yè)碳匯交易合作)
- 2025年校園安全設(shè)施維護(hù)與保安人員聘用合同2篇
- 二零二五年度集體魚塘承包與漁業(yè)可持續(xù)發(fā)展戰(zhàn)略合作合同模板
- 2025年度船舶保險(xiǎn)合同
- 2025年度古建筑修復(fù)防水工程承包合同
- 氣胸病人的護(hù)理幻燈片
- JTS-167-2-2009重力式碼頭設(shè)計(jì)與施工規(guī)范
- DBJ-T15-81-2022 建筑混凝土結(jié)構(gòu)耐火設(shè)計(jì)技術(shù)規(guī)程
- GB/T 22849-2024針織T恤衫
- 山東省淄博市2023-2024學(xué)年高二上學(xué)期教學(xué)質(zhì)量檢測化學(xué)試題
- 人工智能在電影與影視制作中的創(chuàng)新與效果提升
- 新生兒腸絞痛的課件
- 酒店民宿自媒體營銷策劃
- 消除母嬰傳播培訓(xùn)課件
- 包裝過程質(zhì)量控制
- 通用電子嘉賓禮薄
評論
0/150
提交評論