版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川蓉城名校聯(lián)盟2025屆高一下數(shù)學(xué)期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,這三天中恰有兩天下雨的概率近似為A.0.35 B.0.25 C.0.20 D.0.152.等比數(shù)列的前項和為,若,則公比()A. B. C. D.3.設(shè)函數(shù),則滿足的的取值范圍是()A. B. C. D.4.在中,內(nèi)角、、所對的邊分別為、、,且,則下列關(guān)于的形狀的說法正確的是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定5.在區(qū)間上隨機地取一個數(shù).則的值介于0到之間的概率為().A. B. C. D.6.函數(shù)的部分圖像大致為A. B. C. D.7.已知,且,則()A. B.7 C. D.8.圓的圓心坐標(biāo)和半徑分別為()A. B. C. D.9.已知圓的方程為,則圓心坐標(biāo)為()A. B. C. D.10.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18km,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?0°,經(jīng)過1min后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?精確到0.1km)()A.11.4 B.6.6C.6.5 D.5.6二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,是邊上一點,且滿足,若,則_________.12.在中,內(nèi)角的對邊分別為,若的周長為,面積為,,則__________.13.若關(guān)于的不等式的解集為,則__________14.在△中,三個內(nèi)角、、的對邊分別為、、,若,,,則________15.已知,且,則的取值范圍是____________.16.在三棱錐中,平面,是邊長為2的正三角形,,則三棱錐的外接球的表面積為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在△ABC中,角A,B,C的對邊分別為a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面積;(2)若m=,A=2B,a=,求b.18.已知點、、(),且.(1)求函數(shù)的解析式;(2)如果當(dāng)時,兩個函數(shù)與的圖象有兩個交點,求的取值范圍.19.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點P在線段EF上運動,設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.20.已知偶函數(shù).(1)若方程有兩不等實根,求的范圍;(2)若在上的最小值為2,求的值.21.已知不等式ax2-3x+6>4的解集為{x|x<1(1)求a,b;(2)解關(guān)于x的不等式a
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】解:由題意知模擬三天中恰有兩天下雨的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù),在20組隨機數(shù)中表示三天中恰有兩天下雨的有:191、271、932、812、393,共5組隨機數(shù),∴所求概率為=0.1.故選B2、A【解析】
將轉(zhuǎn)化為關(guān)于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點睛】本題考查等比數(shù)列的基本運算,等比數(shù)列中共有五個量,其中是基本量,這五個量可“知三求二”,求解的實質(zhì)是解方程或解方程組.3、C【解析】
利用特殊值,對選項進(jìn)行排除,由此得到正確選項.【詳解】當(dāng)時,,由此排除D選項.當(dāng)時,,由此排除B選項.當(dāng)時,,由此排除A選項.綜上所述,本小題選C.【點睛】本小題主要考查分段函數(shù)求值,考查利用特殊值法解選擇題,屬于基礎(chǔ)題.4、B【解析】
利用三角形的正、余弦定理判定.【詳解】在中,內(nèi)角、、所對的邊分別為、、,且,由正弦定理得,得,則,為直角三角形.故選B【點睛】本題考查了三角形正弦定理的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】
由,得.由函數(shù)的圖像知,使的值介于0到之間的落在和之內(nèi).于是,所求概率為.故答案為D6、C【解析】由題意知,函數(shù)為奇函數(shù),故排除B;當(dāng)時,,故排除D;當(dāng)時,,故排除A.故選C.點睛:函數(shù)圖像問題首先關(guān)注定義域,從圖像的對稱性,分析函數(shù)的奇偶性,根據(jù)函數(shù)的奇偶性排除部分選擇項,從圖像的最高點、最低點,分析函數(shù)的最值、極值,利用特值檢驗,較難的需要研究單調(diào)性、極值等,從圖像的走向趨勢,分析函數(shù)的單調(diào)性、周期性等.7、D【解析】
由平方關(guān)系求得,再由商數(shù)關(guān)系求得,最后由兩角和的正切公式可計算.【詳解】,,,,.故選:D.【點睛】本題考查兩角和的正切公式,考查同角間的三角函數(shù)關(guān)系.屬于基礎(chǔ)題.8、B【解析】
根據(jù)圓的標(biāo)準(zhǔn)方程形式直接確定出圓心和半徑.【詳解】因為圓的方程為:,所以圓心為,半徑,故選:B.【點睛】本題考查給定圓的方程判斷圓心和半徑,難度較易.圓的標(biāo)準(zhǔn)方程為,其中圓心是,半徑是.9、C【解析】試題分析:的方程變形為,圓心為考點:圓的方程10、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航線離山頂h=×sin75°≈11.4(km).∴山高為18-11.4=6.6(km).選B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
記,則,則可求出,設(shè),,得,,故結(jié)合余弦定理可得,解得的值,即可求,進(jìn)而求的值.【詳解】根據(jù)題意,不妨設(shè),,則,因,所以,設(shè),由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【點睛】本題主要考查了余弦定理在解三角形中的綜合應(yīng)用以及同角三角函數(shù)的基本關(guān)系式,屬于中檔題.12、3【解析】
分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來,然后確定轉(zhuǎn)化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化;第三步:求結(jié)果.13、1【解析】
根據(jù)二次不等式和二次方程的關(guān)系,得到是方程的兩根,由根與系數(shù)的關(guān)系得到的值.【詳解】因為關(guān)于的不等式的解集為所以是方程的兩根,,由根與系數(shù)的關(guān)系得,解得【點睛】本題考查一元二次不等式和一元二次方程之間的關(guān)系,根與系數(shù)之間的關(guān)系,屬于簡單題.14、【解析】
利用正弦定理求解角,再利用面積公式求解即可.【詳解】由,因為,故,.故.故答案為:【點睛】本題主要考查了解三角形的運用,根據(jù)題中所給的邊角關(guān)系選擇正弦定理與面積公式等.屬于基礎(chǔ)題型.15、【解析】
利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因為且,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎(chǔ)題.16、【解析】
設(shè)三棱錐的外接球半徑為,利用正弦定理求出的外接圓半徑,再利用公式可計算出外接球半徑,最后利用球體的表面積公式可計算出結(jié)果.【詳解】由正弦定理可得,的外接圓直徑為,,設(shè)三棱錐的外接球半徑為,平面,,因此,三棱錐的外接球表面積為,故答案為.【點睛】本題考查多面體的外接球,考查球體表面積的計算,在求解直棱柱后直棱錐的外接球,若底面外接圓半徑為,高為,可利用公式得出外接球的半徑,解題時要熟悉這些結(jié)論的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)當(dāng)時,由余弦定理可求,利用同角三角函數(shù)基本關(guān)系式可求的值,根據(jù)三角形的面積公式即可求解.(2)當(dāng)時,由余弦定理可求,利用同角三角函數(shù)基本關(guān)系式可求的值,根據(jù)二倍角的正弦函數(shù)公式可求的值,利用正弦定理可求的值.【詳解】(1)當(dāng)時,,,,,.(2)當(dāng)時,,,,由正弦定理得:,.【點睛】本題主要考查了余弦定理,同角三角函數(shù)基本關(guān)系式,三角形的面積公式,二倍角的正弦函數(shù)公式,正弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.18、(1);(2)【解析】
(1)根據(jù)向量坐標(biāo)以及向量的數(shù)量積公式求出,利用輔助角公式即可求的解析式;(2),求出的范圍,令,,則畫函數(shù)圖象,由兩個函數(shù)與的圖象有兩個交點,建立不等關(guān)系即可求的值.【詳解】解:(1),,,,,則,即;(2)因為,,令,,則畫函數(shù)圖象如下所示:,要使兩個函數(shù)與的圖象有兩個交點,則,,解得解得.【點睛】本題主要考查三角函數(shù)的化簡和求值,利用向量的數(shù)量積公式結(jié)合三角函數(shù)的輔助角公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵.19、(1)證明見解析(2)θ最小值為60°【解析】
(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解?!驹斀狻浚?)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點,直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).設(shè)n1=(x,y,z)為平面PAB的法向量,由得,取y=1,則n1=(,1,-λ).因為n2=(0,1,0)是平面ADE的一個法向量,所以cosθ===.因為0≤λ≤,所以當(dāng)λ=時,cosθ有最大值,所以θ的最小值為60°.【點睛】本題考查了線面垂直關(guān)系的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1);(2)或.【解析】
(1)由偶函數(shù)的定義,利用,求得的值,再由對數(shù)函數(shù)的單調(diào)性,結(jié)合題設(shè)條件,即可求解實數(shù)的范圍;(2)利用換元法和對勾函數(shù)的單調(diào)性,以及二次函數(shù)的閉區(qū)間上的求法,分類討論對稱軸和區(qū)間的關(guān)系,即可求解.【詳解】(1)因為,所以的定義域為,因為是偶函數(shù),即,所以,故,所以,即方程的解為一切實數(shù),所以,因為,且,所以原方程轉(zhuǎn)化為,令,,所以所以在上是減函數(shù),是增函數(shù),當(dāng)時,使成立的有兩個,又由知,與一一對應(yīng),故當(dāng)時,有兩不等實根;(2)因為,所以,所以,令,則,令,設(shè),則,因為,所以,即在上是增函數(shù),所以,設(shè),則.(i)當(dāng)時,的最小值為,所以,解得,或4(舍去);(ii)當(dāng)時,的最小值為,不合題意;(iii)當(dāng)時,的最小值為,所以,解得,或(舍去).綜上知,或.【點睛】本題主要考查了函數(shù)的綜合應(yīng)用,其中解答中涉及到函數(shù)的奇偶性,對數(shù)函數(shù)的圖象與性質(zhì),以及換元法和分類討論思想的應(yīng)用,試題綜合性強,屬于難題,著重考查了分析問題和解答問題的能力,以及推理與運算能力.21、(1)a=1,b=2;(2)①當(dāng)c>2時,解集為{x|2<x<c};②當(dāng)c<2時,解集為{x|c<x<2};③當(dāng)c=2時,解集為?.【解析】
(1)根據(jù)不等式ax2﹣3x+6>4的解集,利用根與系數(shù)的關(guān)系,求得a、b的值;(2)把不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,討論c的取值,求出對應(yīng)不等式的解集.【詳解】(1)因為不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通訊行業(yè)營業(yè)員崗位總結(jié)
- 幼兒園工作總結(jié)點亮孩子未來的希望
- 醫(yī)療器械行業(yè)技術(shù)崗位總結(jié)
- 2024校園消防安全應(yīng)急預(yù)案(34篇)
- 減資協(xié)議書(2篇)
- 別墅區(qū)住宅租賃協(xié)議(2篇)
- 全民讀書心得體會
- Unit1TeenageLife(詞匯短語句式)-2025屆高三人教版英語一輪復(fù)習(xí)闖關(guān)攻略(解析版)
- 第9課 列寧與十月革命(分層作業(yè))(解析版)
- 2023-2024學(xué)年北京市昌平區(qū)高三上學(xué)期期末考試地理試題(解析版)
- 農(nóng)貿(mào)市場安全生產(chǎn)風(fēng)險分級管控和隱患排查治理雙體系方案全套資料2019-2020完整實施方案模板
- 網(wǎng)絡(luò)安全設(shè)備巡檢報告
- 人教版 五年級上冊道德與法治全冊各課及單元同步檢測試卷【含答案】
- T梁濕接縫及橫隔梁施工方案
- 校園廣播系統(tǒng)施工安裝方案
- 掛籃檢查驗收記錄表
- 小學(xué)勞動教育培訓(xùn)心得體會
- 《眼科常見疾病護(hù)理》
- 2023部編人教版八年級上冊道德與法治知識點提綱
- 暫緩執(zhí)行拘留申請書
- 乙肝五項操作規(guī)程(膠體金法)
評論
0/150
提交評論