版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東高明一中數(shù)學高一下期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知兩條直線,,兩個平面,,下面說法正確的是()A. B. C. D.2.用斜二測畫法畫一個邊長為2的正三角形的直觀圖,則直觀圖的面積是:A. B. C. D.3.設等比數(shù)列的公比為,其前項的積為,并且滿足條件:;給出下列論:①;②;③值是中最大值;④使成立的最大自然數(shù)等于198.其中正確的結(jié)論是()A.①③ B.①④ C.②③ D.②④4.在鈍角三角形ABC中,若B=45°,a=2,則邊長cA.(1,2) B.(0,1)∪(5.若為圓的弦的中點,則直線的方程是()A. B.C. D.6.盒中裝有除顏色以外,形狀大小完全相同的3個紅球、2個白球、1個黑球,從中任取2個球,則互斥而不對立的兩個事件是()A.至少有一個白球;至少有一個紅球 B.至少有一個白球;紅、黑球各一個C.恰有一個白球:一個白球一個黑球 D.至少有一個白球;都是白球7.設等差數(shù)列的前n項和為,若,則()A.3 B.4 C.5 D.68.平面內(nèi)任一向量都可以表示成的形式,下列關(guān)于向量的說法中正確的是()A.向量的方向相同 B.向量中至少有一個是零向量C.向量的方向相反 D.當且僅當時,9.在長方體中,,,則直線與平面所成角的正弦值為()A. B. C. D.10.已知正數(shù)組成的等比數(shù)列的前8項的積是81,那么的最小值是()A. B. C.8 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,那么的值是________.12.若,,則__________.13.設α為第二象限角,若sinα=3514.已知向量,,若與的夾角是銳角,則實數(shù)的取值范圍為______.15.在邊長為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.16.抽樣調(diào)查某地區(qū)名教師的年齡和學歷狀況,情況如下餅圖:則估計該地區(qū)歲以下具有研究生學歷的教師百分比為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設函數(shù)f(x)=x(1)當a=2時,函數(shù)f(x)的圖像經(jīng)過點(1,a+1),試求m的值,并寫出(不必證明)f(x)的單調(diào)遞減區(qū)間;(2)設a=-1,h(x)+x?f(x)=0,g(x)=2cos(x-π3),若對于任意的s∈[1,2],總存在t∈[0,π]18.在中,角所對的邊為,且滿足(1)求角的值;(2)若且,求的取值范圍.19.已知函數(shù),的部分圖像如圖所示,點,,都在的圖象上.(1)求的解析式;(2)當時,恒成立,求的取值范圍.20.已知函數(shù).(1)若函數(shù)的周期,且滿足,求及的遞增區(qū)間;(2)若,在上的最小值為,求的最小值.21.眉山市位于四川西南,有“千載詩書城,人文第一州”的美譽,這里是大文豪蘇軾、蘇洵、蘇轍的故鄉(xiāng),也是人們旅游的好地方.在今年的國慶黃金周,為了豐富游客的文化生活,每天在東坡故里三蘇祠舉行“三蘇文化”知識競賽.已知甲、乙兩隊參賽,每隊3人,每人回答一個問題,答對者為本隊贏得一分,答錯得零分.假設甲隊中每人答對的概率均為,乙隊中3人答對的概率分別為,,,且各人回答正確與否相互之間沒有影響.(1)分別求甲隊總得分為0分;2分的概率;(2)求甲隊得2分乙隊得1分的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
滿足每個選項的條件時能否找到反例推翻結(jié)論即可?!驹斀狻緼:當m,n中至少有一條垂直交線才滿足。B:很明顯m,n還可以異面直線不平行。C:只有當m垂直交線時,否則不成立。故選:D【點睛】此題考查直線和平面位置關(guān)系,一般通過反例排除法即可解決,屬于較易題目。2、C【解析】分析:先根據(jù)直觀圖畫法得底不變,為2,再研究高,最后根據(jù)三角形面積公式求結(jié)果.詳解:因為根據(jù)直觀圖畫法得底不變,為2,高為,所以直觀圖的面積是選C.點睛:本題考查直觀圖畫法,考查基本求解能力.3、B【解析】
利用等比數(shù)列的性質(zhì)及等比數(shù)列的通項公式判斷①正確;利用等比數(shù)列的性質(zhì)及不等式的性質(zhì)判斷②錯誤;利用等比數(shù)列的性質(zhì)判斷③錯誤;利用等比數(shù)列的性質(zhì)判斷④正確,,從而得出結(jié)論.【詳解】解:由可得又即由,即,結(jié)合,所以,,即,,即,即①正確;又,所以,即,即②錯誤;因為,即值是中最大值,即③錯誤;由,即,即,又,即,即④正確,綜上可得正確的結(jié)論是①④,故選:B.【點睛】本題考查了等比數(shù)列的性質(zhì)及不等式的性質(zhì),重點考查了運算能力,屬中檔題.4、D【解析】試題分析:解法一:,由三角形正弦定理誘導公式有,利用三角恒等公式能夠得到,當A為銳角時,0°<A<45°,,即,當A為鈍角時,90°<A<135°,,綜上所述,;解法二:利用圖形,如圖,,,當點A(D)在線段BE上時(不含端點B,E),為鈍角,此時;當點A在線段EF上時,為銳角三角形或直角三角形;當點A在射線FG(不含端點F)上時,為鈍角,此時,所以c的取值范圍為.考點:解三角形.【思路點睛】解三角形需要靈活運用正余弦定理以及三角形的恒等變形,在解答本題時,利用三角形內(nèi)角和,將兩角化作一角,再利用正弦定理即可列出邊長c與角A的關(guān)系式,根據(jù)角A的取值范圍即可求出c的范圍,本題亦可利用物理學中力的合成,合力的大小來確定c的大小,正如解法二所述.5、D【解析】
圓的圓心為O,求出圓心坐標,利用垂徑定理,可以得到,求出直線的斜率,利用兩直線垂直斜率關(guān)系可以求出直線的斜率,利用點斜式寫出直線方程,最后化為一般式方程.【詳解】設圓的圓心為O,坐標為(1,0),根據(jù)圓的垂徑定理可知:,因為,所以,因此直線的方程為,故本題選D.【點睛】本題考查了圓的垂徑定理、兩直線垂直斜率的關(guān)系,考查了斜率公式.6、B【解析】
根據(jù)對立事件和互斥事件的定義,對每個選項進行逐一分析即可.【詳解】從6個小球中任取2個小球,共有15個基本事件,因為存在事件:取出的兩個球為1個白球和1個紅球,故至少有一個白球;至少有一個紅球,這兩個事件不互斥,故A錯誤;因為存在事件:取出的兩個球為1個白球和1個黑球,故恰有一個白球:一個白球一個黑球,這兩個事件不互斥,故C錯誤;因為存在事件:取出的兩個球都是白球,故至少有一個白球;都是白球,這兩個事件不互斥,故D錯誤;因為至少有一個白球,包括:1個白球和1個紅球,1個白球和1個黑球,2個白球這3個基本事件;紅、黑球各一個只包括1個紅球1個白球這1個基本事件,故兩個事件互斥,因還有其它基本事件未包括,故不對立.故B正確.故選:B.【點睛】本題考查互斥事件和對立事件的辨析,屬基礎題.7、C【解析】
由又,可得公差,從而可得結(jié)果.【詳解】是等差數(shù)列又,∴公差,,故選C.【點睛】本題主要考查等差數(shù)列的通項公式與求和公式的應用,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.8、D【解析】
根據(jù)平面向量的基本定理,若平面內(nèi)任一向量都可以表示成的形式,構(gòu)成一個基底,所以向量不共線.【詳解】因為任一向量,根據(jù)平面向理的基本定理得,所以向量不共線,故A,C不正確.是一個基底,所以不能為零向量,故B不正確.因為不共線,且不能為零向量,所以若,當且僅當,故D正確.故選:D【點睛】本題主要考查平面向量的基本定理,還考查了理解辨析的能力,屬于基礎題.9、D【解析】
由題意,由于圖形中已經(jīng)出現(xiàn)了兩兩垂直的三條直線,所以可以利用空間向量的方法求解直線與平面所成的夾角.【詳解】解:以點為坐標原點,以所在的直線為軸、軸、軸,建立空間直角坐標系,
則,
為平面的一個法向量.
.
∴直線與平面所成角的正弦值為.故選:D.【點睛】此題重點考查了利用空間向量,抓住直線與平面所成的角與該直線的方向向量與平面的法向量的夾角之間的關(guān)系,利用向量方法解決立體幾何問題.10、A【解析】
利用等比數(shù)列的通項公式和均值不等式可得結(jié)果.【詳解】由由為正項數(shù)列,可知再由均值不等式可知所以(當且僅當時取等號)故選:A【點睛】本題主要考查等比數(shù)列的通項公式及均值不等式,屬基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
首先根據(jù)題中條件求出角,然后代入即可.【詳解】由題知,,所以,故.故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值,屬于基礎題.12、【解析】
由等比數(shù)列前n項公式求出已知等式左邊的和,再求解.【詳解】易知不合題意,∴,若,則,不合題意,∴,,∴,,又,∴.故答案為:.【點睛】本題考查等比數(shù)列的前n項和公式,解題時需分類討論,首先對的情形進行說明,然后按是否為1分類.13、-【解析】
先求出cosα,再利用二倍角公式求sin2α【詳解】因為α為第二象限角,若sinα=所以cosα=所以sin2α故答案為-【點睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學生對這些知識的理解掌握水平,屬于基礎題.14、【解析】
先求出與的坐標,再根據(jù)與夾角是銳角,則它們的數(shù)量積為正值,且它們不共線,求出實數(shù)的取值范圍,.【詳解】向量,,,,若與的夾角是銳角,則與不共線,且它們乘積為正值,即,且,求得,且.【點睛】本題主要考查利用向量的數(shù)量積解決向量夾角有關(guān)的問題,以及數(shù)量積的坐標表示,向量平行的條件等.條件的等價轉(zhuǎn)化是解題的關(guān)鍵.15、【解析】
由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點睛】本題考查面積型幾何概型概率的求法,屬基礎題.16、【解析】
根據(jù)餅狀圖中的歲以下本科學歷人數(shù)和占比可求得歲以下教師總?cè)藬?shù),從而可得其中的具有研究生學歷的教師人數(shù),進而得到所求的百分比.【詳解】由歲以下本科學歷人數(shù)和占比可知,歲以下教師總?cè)藬?shù)為:人歲以下有研究生學歷的教師人數(shù)為:人歲以下有研究生學歷的教師的百分比為:本題正確結(jié)果:【點睛】本題考查利用餅狀圖計算總體中的數(shù)據(jù)分布和頻率分布的問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)遞減區(qū)間為[-2,0)和(0,2【解析】
(1)將點(1,3)代入函數(shù)f(x)即可求出m,根據(jù)函數(shù)的解析式寫出單調(diào)遞減區(qū)間即可(2)當a=-1時,寫出函數(shù)h(x),由題意知h(s)的值域是g(t)值域的子集,即可求出.【詳解】(1)因為函數(shù)f(x)的圖像經(jīng)過點(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴????∴f(x)的單調(diào)遞減區(qū)間為[-2,0)(2)當a=-1時,f(x)=x-1∴???∵g(x)=2cos∴??t∈[0,π]時,g(t)∈[-1,2]由對于任意的s∈[1,2],總存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因為h(x)=-x2-mx+1①當-m2≤1只需滿足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②當1<-m2<2因為h(1)=-m>2,與h(s)?[-1,2]矛盾,故舍去.③當-m2≥2h(1)=-m≥4與h(s)?[-1,2]矛盾,故舍去.綜上,m∈[-2,-1].【點睛】本題主要考查了函數(shù)的單調(diào)性,以及含參數(shù)二次函數(shù)值域的求法,涉及存在性問題,轉(zhuǎn)化思想和分類討論思想要求較高,屬于難題.18、(1)或;(2).【解析】試題分析:(1)利用升冪公式及兩角和與差的余弦公式化簡已知等式,可得,從而得,注意兩解;(2)由,得,利用正弦定理得,從而可變?yōu)?,利用三角形的?nèi)角和把此式化為一個角的函數(shù),再由兩角和與差的正弦公式化為一個三角函數(shù)形式,由的范圍()結(jié)合正弦函數(shù)性質(zhì)可得取值范圍.試題解析:(1)由已知,得,化簡得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.19、(1);(2)【解析】
(1)由三角函數(shù)圖像,求出即可;(2)求出函數(shù)的值域,再列不等式組求解即可.【詳解】解:(1)由的圖象可知,則,因為,,所以,故.因為在函數(shù)的圖象上,所以,所以,即,因為,所以.因為點在函數(shù)的圖象上,所以,解得,故.(2)因為,所以,所以,則.因為,所以,所以,解得.故的取值范圍為.【點睛】本題考查了利用三角函數(shù)圖像求解析式,重點考查了三角函數(shù)值域的求法,屬中檔題.20、(1),;(2)2.【解析】
(1)由函數(shù)的性質(zhì)知,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度消防中控室設備運維外包服務合同3篇
- 2024年版教育領(lǐng)域戰(zhàn)略合作合同書范本一
- 2024無固定期限臨時展覽館租賃合同樣本3篇
- 2024版外墻保溫施工合同十
- 二零二五年度停車場車位招商與運營管理合同3篇
- 作品改編許可合同
- 污水廠安全生產(chǎn)檢查制度(2篇)
- 2025年信用社副主任競聘報告競職演講例文(3篇)
- 某單位幫扶某村實施方案模版(2篇)
- 人事主管崗位工作職責模版(2篇)
- 私立學校招生工作總結(jié)
- (完整word版)體檢報告單模版
- 銑刨機操作規(guī)程范文
- 鋼鐵行業(yè)用電分析
- 考研的重要性和必要性
- 掘進機維修培訓課件
- 導醫(yī)接待工作的溝通技巧與話術(shù)培訓
- 分布式光伏高處作業(yè)專項施工方案
- 江蘇省南京市建鄴區(qū)2023-2024學年五年級上學期期末數(shù)學試卷.1
- 運動損傷的急救處理和康復
- 白內(nèi)障手術(shù)術(shù)后護理和飲食禁忌
評論
0/150
提交評論