版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年朝陽市重點中學(xué)高考仿真卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.2.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.3.已知定義在上的偶函數(shù),當(dāng)時,,設(shè),則()A. B. C. D.4.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.25.已知集合A,則集合()A. B. C. D.6.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設(shè),則的取值范圍是()A. B. C. D.7.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.8.已知定義在R上的函數(shù)(m為實數(shù))為偶函數(shù),記,,則a,b,c的大小關(guān)系為()A. B. C. D.9.偶函數(shù)關(guān)于點對稱,當(dāng)時,,求()A. B. C. D.10.已知向量,是單位向量,若,則()A. B. C. D.11.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,12.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.14.在平面直角坐標(biāo)系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.15.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.16.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.18.(12分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;(2)求證:對上的任意兩個實數(shù),,總有成立.19.(12分)已知為橢圓的左、右焦點,離心率為,點在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.20.(12分)已知關(guān)于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.21.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.22.(10分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,難度較易.2、A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運算能力,屬于基礎(chǔ)題.3、B【解析】
根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時,,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進而判斷函數(shù)在時的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時,,則,令則,當(dāng)時,,則在時單調(diào)遞增,因為,所以,即,則在時單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.4、B【解析】
對復(fù)數(shù)進行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復(fù)數(shù)的計算,虛部的概念,屬于簡單題.5、A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.6、C【解析】
以為坐標(biāo)原點,以分別為x軸,y軸建立直角坐標(biāo)系,利用向量的坐標(biāo)運算計算即可解決.【詳解】以為坐標(biāo)原點建立如圖所示的直角坐標(biāo)系,不妨設(shè)正方形的邊長為1,則,,設(shè),則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標(biāo)運算求變量的取值范圍,考查學(xué)生的基本計算能力,本題的關(guān)鍵是建立適當(dāng)?shù)闹苯亲鴺?biāo)系,是一道基礎(chǔ)題.7、B【解析】
先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.8、B【解析】
根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大小.9、D【解析】
推導(dǎo)出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關(guān)于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當(dāng)時,,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導(dǎo)出函數(shù)的周期性是解答的關(guān)鍵,考查推理能力與計算能力,屬于中等題.10、C【解析】
設(shè),根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設(shè),,是單位向量,,,,聯(lián)立方程解得:或當(dāng)時,;當(dāng)時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.11、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點時,直線在軸上的截距最大,即,當(dāng)過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認識,屬于基礎(chǔ)題.12、D【解析】
先由是偶函數(shù),得到關(guān)于直線對稱;進而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時,由得,所以,解得;當(dāng)即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應(yīng)不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經(jīng)過原點O.【詳解】設(shè)點,由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.14、【解析】
設(shè):,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結(jié)合圓的方程,垂徑定理的基本知識,屬于中檔題.15、18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點對稱,結(jié)合函數(shù)的對稱性進行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點對稱,,函數(shù)關(guān)于點對稱,所以兩個函數(shù)圖象的交點也關(guān)于點(1,2)對稱,與圖像的交點為,,…,,兩兩關(guān)于點對稱,.故答案為:18【點睛】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.16、【解析】
根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點的坐標(biāo),依題意求出,,,的表達式,再進行數(shù)量積的運算,最后求和即可得出結(jié)果.【詳解】解:以的中點為坐標(biāo)原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點的坐標(biāo)為,則,,,所以故答案為:【點睛】本題考查平面向量的坐標(biāo)表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
本題主要考查了等比數(shù)列的通項公式的求解,數(shù)列求和的錯位相減求和是數(shù)列求和中的重點與難點,要注意掌握.(1)設(shè)等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結(jié)合數(shù)列的特點,考慮利用錯位相減可求數(shù)列的和解:(1)(2),兩式相減:18、(1)(2)見解析【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),依題意可得在上恒成立,參變分離得在上恒成立.設(shè),求出即可得到參數(shù)的取值范圍;(2)不妨設(shè),,,利用導(dǎo)數(shù)說明函數(shù)在上是減函數(shù),即可得證;【詳解】解:(1)∵∴,且函數(shù)在上為減函數(shù),即在上恒成立,∴在上恒成立.設(shè),∵函數(shù)在上單調(diào)遞增,∴,∴,∴實數(shù)的取值范圍為.(2)不妨設(shè),,,則,∴.∵,∴,又,令,∴,∴在上為減函數(shù),∴,∴,即,∴在上是減函數(shù),∴,即,∴,∴當(dāng)時,.∵,∴.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值,利用導(dǎo)數(shù)證明不等式,考查了推理能力與計算能力,屬于難題.19、(1);(2)存在,.【解析】
(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時,可求得,求得,②當(dāng)直線的斜率存在且不為0時,設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時,,此時,②當(dāng)直線的斜率存在且不為0時,設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【點睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長公式的相關(guān)問題,當(dāng)兩直線的斜率具有關(guān)系時,可能通過斜率的代換得出另一條線段的弦長,屬于中檔題.20、(1);(2)見解析【解析】
(1)由題意,只需找到的最大值即可;(2),構(gòu)造并利用基本不等式可得,即.【詳解】(1),∴的最大值為4.關(guān)于的不等式有解等價于,(?。┊?dāng)時,上述不等式轉(zhuǎn)化為,解得,(ⅱ)當(dāng)時,上述不等式轉(zhuǎn)化為,解得,綜上所述,實數(shù)的取值范圍為,則實數(shù)的最大值為3,即.(2)證明:根據(jù)(1)求解知,所以,又∵,,,,,當(dāng)且僅當(dāng)時,等號成立,即,∴,所以,.【點睛】本題考查絕對值不等式中的能成立問題以及綜合法證明不等式問題,是一道中檔題.21、.【解析】
根據(jù)特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本題考查矩陣的特征多項式以及逆矩陣的求解,是基礎(chǔ)題.22、(Ⅰ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版生物質(zhì)發(fā)電監(jiān)理服務(wù)合同三方協(xié)議3篇
- 二零二五版企業(yè)安全風(fēng)險評估與安保服務(wù)合同3篇
- 二零二五年度高品質(zhì)鋼結(jié)構(gòu)裝配式建筑安裝服務(wù)合同3篇
- 二零二五版電影投資融資代理合同樣本3篇
- 二零二五版初級農(nóng)產(chǎn)品電商平臺入駐合同2篇
- 二零二五年度電商平臺安全實驗報告安全防護方案合同3篇
- 二零二五年度白酒銷售區(qū)域保護與競業(yè)禁止合同3篇
- 二零二五版建筑工程專用防水材料招投標(biāo)合同范本3篇
- 二零二五年研發(fā)合作與成果共享合同2篇
- 二零二五版鋼結(jié)構(gòu)工程節(jié)能合同范本下載3篇
- 2024年四川省德陽市中考道德與法治試卷(含答案逐題解析)
- 施工現(xiàn)場水電費協(xié)議
- SH/T 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設(shè)計規(guī)范(正式版)
- 六年級數(shù)學(xué)質(zhì)量分析及改進措施
- 一年級下冊數(shù)學(xué)口算題卡打印
- 真人cs基于信號發(fā)射的激光武器設(shè)計
- 【閱讀提升】部編版語文五年級下冊第三單元閱讀要素解析 類文閱讀課外閱讀過關(guān)(含答案)
- 四年級上冊遞等式計算練習(xí)200題及答案
- 法院后勤部門述職報告
- 2024年國信證券招聘筆試參考題庫附帶答案詳解
- 道醫(yī)館可行性報告
評論
0/150
提交評論