山東省菏澤市第一中學老校區(qū)2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第1頁
山東省菏澤市第一中學老校區(qū)2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第2頁
山東省菏澤市第一中學老校區(qū)2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第3頁
山東省菏澤市第一中學老校區(qū)2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第4頁
山東省菏澤市第一中學老校區(qū)2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省菏澤市第一中學老校區(qū)2023-2024學年高一數(shù)學第二學期期末質(zhì)量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.2.設a>0,b>0,若是和的等比中項,則的最小值為()A.6 B. C.8 D.93.在中,若,則此三角形為()三角形.A.等腰 B.直角 C.等腰直角 D.等腰或直角4.函數(shù),,若在區(qū)間上是單調(diào)函數(shù),,則的值為()A. B.2 C.或 D.或25.在中,,,,則的面積為A. B. C. D.6.直三棱柱ABC—A1B1C1中,BB1中點為M,BC中點為N,∠ABC=120°,AB=2,BC=CC1=1,則異面直線AB1與MN所成角的余弦值為A.1 B. C. D.07.在中,a、b分別為內(nèi)角A、B的對邊,如果,,,則()A. B. C. D.8.已知,復數(shù),若的虛部為1,則()A.2 B.-2 C.1 D.-19.設向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件10.右圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則________.12.學校為了調(diào)查學生在課外讀物方面的支出情況,抽出了一個容量為100且支出在元的樣本,其頻率分布直方圖如圖,則支出在元的同學人數(shù)為________13.執(zhí)行如圖所示的程序框圖,則輸出的_______.14.數(shù)列滿足,,,則數(shù)列的通項公式______.15.在一個不透明的布袋中,紅色,黑色,白色的玻璃球共有40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn)其中摸到紅色球,黑色球的頻率穩(wěn)定在15%和45%,則口袋中白色球的個數(shù)可能是_________個.16.把數(shù)列的各項排成如圖所示三角形狀,記表示第m行、第n個數(shù)的位置,則在圖中的位置可記為____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)證明:;(2)證明:對任何正整數(shù)n,存在多項式函數(shù),使得對所有實數(shù)x均成立,其中均為整數(shù),當n為奇數(shù)時,,當n為偶數(shù)時,;(3)利用(2)的結(jié)論判斷是否為有理數(shù)?18.小明同學在寒假社會實踐活動中,對白天平均氣溫與某家奶茶店的品牌飲料銷量之間的關系進行了分析研究,他分別記錄了1月11日至1月15日的白天氣溫()與該奶茶店的品牌飲料銷量(杯),得到如表數(shù)據(jù):日期1月11號1月12號1月13號1月14號1月15號平均氣溫()91012118銷量(杯)2325302621(1)若先從這五組數(shù)據(jù)中抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;(2)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程式;(3)根據(jù)(2)所得的線性回歸方程,若天氣預報1月16號的白天平均氣溫為,請預測該奶茶店這種飲料的銷量.(參考公式:,)19.在中,為上的點,為上的點,且.(1)求的長;(2)若,求的余弦值.20.已知數(shù)列的各項均為正數(shù),對任意,它的前項和滿足,并且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設,為數(shù)列的前項和,求.21.已知函數(shù)(1)若關于的不等式的解集為,求的值;(2)若對任意恒成立,求的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由正弦定理可得,再結(jié)合余弦定理求解即可.【詳解】解:因為在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點睛】本題考查了正弦定理及余弦定理,重點考查了運算能力,屬基礎題.2、D【解析】

試題分析:由題意a>0,b>0,且是和的等比中項,即,則,當且僅當時,即時取等號.考點:重要不等式,等比中項3、B【解析】

由條件結(jié)合正弦定理即可得到,由此可得三角形的形狀.【詳解】由于在中,有,根據(jù)正弦定理可得;所以此三角形為直角三角形;、故答案選B【點睛】本題主要考查正弦定理的應用,屬于基礎題.4、D【解析】

先根據(jù)單調(diào)性得到的范圍,然后根據(jù)得到的對稱軸和對稱中心,考慮對稱軸和對稱中心是否在同一周期內(nèi),分析得到的值.【詳解】因為,則;又因為,則由可知得一條對稱軸為,又因為在區(qū)間上是單調(diào)函數(shù),則由可知的一個對稱中心為;若與是同一周期內(nèi)相鄰的對稱軸和對稱中心,則,則,所以;若與不是同一周期內(nèi)相鄰的對稱軸和對稱中心,則,則,所以.【點睛】對稱軸和對稱中心的判斷:對稱軸:,則圖象關于對稱;對稱中心:,則圖象關于成中心對稱.5、C【解析】

利用三角形中的正弦定理求出角B,利用三角形內(nèi)角和求出角C,再利用三角形的面積公式求出三角形的面積,求得結(jié)果.【詳解】因為中,,,,由正弦定理得:,所以,所以,所以,所以,故選C.【點睛】該題所考查的是有關三角形面積的求解問題,在解題的過程中,需要注意根據(jù)題中所給的條件,應用正弦定理求得,從而求得,之后應用三角形面積公式求得結(jié)果.6、D【解析】

先找到直線異面直線AB1與MN所成角為∠,再通過解三角形求出它的余弦值.【詳解】由題得,所以∠就是異面直線AB1與MN所成角或補角.由題得,,因為,所以異面直線AB1與MN所成角的余弦值為0.故選:D【點睛】本題主要考查異面直線所成的角的求法,考查余弦定理解三角形,意在考查學生對這些知識的理解掌握水平和分析推理能力.7、A【解析】

先求出再利用正弦定理求解即可.【詳解】,,,由正弦定理可得,解得,故選:A.【點睛】本題注意考查正弦定理的應用,屬于中檔題.正弦定理主要有三種應用:求邊和角、邊角互化、外接圓半徑.8、B【解析】,所以,。故選B。9、C【解析】

利用向量共線的性質(zhì)求得,由充分條件與必要條件的定義可得結(jié)論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質(zhì)、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.10、D【解析】

由三視圖可知,該幾何體為棱長為2的正方體截去一個三棱錐,由正方體的體積減去三棱錐的體積求解.【詳解】根據(jù)三視圖,可知原幾何體如下圖所示,該幾何體為棱長為的正方體截去一個三棱錐,則該幾何體的體積為.故選:D.【點睛】本題考查了幾何體三視圖的應用問題以及幾何體體積的求法,關鍵是根據(jù)三視圖還原原來的空間幾何體,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先求,再代入求值得解.【詳解】由題得所以.故答案為【點睛】本題主要考查共軛復數(shù)和復數(shù)的模的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.12、30【解析】

由頻率分布直方圖求出支出在元的概率,由此能力求出支出在元的同學的人數(shù),得到答案.【詳解】由頻率分布直方圖,可得支出在元的概率,,所以支出在元的同學的人數(shù)為人.【點睛】本題主要考查了頻率分布直方圖的應用,以及概率的計算,其中解答中熟記頻率分布直方圖的性質(zhì),合理求得相應的概率是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.13、【解析】

按照程序框圖運行程序,直到a的值滿足a>100時,輸出結(jié)果即可.【詳解】第一次循環(huán):a=3;第二次循環(huán):a=7;第三次循環(huán):a=15;第四次循環(huán):a=31;第五次循環(huán):a=63;第六次循環(huán):a=127,a>100,所以輸出a.所以本題答案為127.【點睛】本題考查根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)計算輸出結(jié)果的問題,屬于基礎題.14、【解析】

由題意得出,利用累加法可求出.【詳解】數(shù)列滿足,,,,因此,.故答案為:.【點睛】本題考查利用累加法求數(shù)列的通項,解題時要注意累加法對數(shù)列遞推公式的要求,考查計算能力,屬于中等題.15、16【解析】

根據(jù)紅色球和黑色球的頻率穩(wěn)定值,計算紅色球和黑色球的個數(shù),從而得到白色球的個數(shù).【詳解】根據(jù)概率是頻率的穩(wěn)定值的意義,紅色球的個數(shù)為個;黑色球的個數(shù)為個;故白色球的個數(shù)為4個.故答案為:16.【點睛】本題考查概率和頻率之間的關系:概率是頻率的穩(wěn)定值.16、【解析】

利用第m行共有個數(shù),前m行共有個數(shù),得的位置即可求解【詳解】因為第m行共有個數(shù),前m行共有個數(shù),所以應該在第11行倒數(shù)第二個數(shù),所以的位置為.故答案為:【點睛】本題考查等差數(shù)列的通項和求和公式,發(fā)現(xiàn)每行個數(shù)成等差是關鍵,是基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析;(3)不是【解析】

(1),利用兩角和的正弦和二倍角公式,進行證明;(2)對分奇偶,即和兩種情況,結(jié)合兩角和的余弦公式,積化和差公式,利用數(shù)學歸納法進行證明;(3)根據(jù)(2)的結(jié)論,將表示出來,然后判斷其每一項都為無理數(shù),從而得到答案.【詳解】(1)所以原式得證.(2)為奇數(shù)時,時,,其中,成立時,,其中,成立時,,其中,成立,則當時,所以得到因為均為整數(shù),所以也均為整數(shù),故原式成立;為偶數(shù)時,時,,其中,時,,其中,成立,時,,其中,成立,則當時,所以得到其中,因為均為整數(shù),所以也均為整數(shù),故原式成立;綜上可得:對任何正整數(shù),存在多項式函數(shù),使得對所有實數(shù)均成立,其中,均為整數(shù),當為奇數(shù)時,,當為偶數(shù)時,;(3)由(2)可得其中均為有理數(shù),因為為無理數(shù),所以均為無理數(shù),故為無理數(shù),所以不是有理數(shù).【點睛】本題考查利三角函數(shù)的二倍角的余弦公式,積化和差公式,數(shù)學歸納法證明,屬于難題.18、(1);(2);(3)19杯.【解析】試題分析:(1)由“選取的組數(shù)據(jù)恰好是相鄰天的數(shù)據(jù)”為事件,得出基本事件的總數(shù),利用古典概型,即可求解事件的概率;(2)由數(shù)據(jù)求解,求由公式,求得,即可求得回歸直線方程;(3)當,代入回歸直線方程,即可作出預測的結(jié)論.試題解析:(Ⅰ)設“選取的組數(shù)據(jù)恰好是相鄰天的數(shù)據(jù)”為事件,所有基本事件(其中,為月份的日期數(shù))有種,事件包括的基本事件有,,,共種.所以.(Ⅱ)由數(shù)據(jù),求得,.由公式,求得,,所以關于的線性回歸方程為.(Ⅲ)當時,.所以該奶茶店這種飲料的銷量大約為杯.19、(1);(2).【解析】試題分析:本題是正弦定理、余弦定理的應用.(1)中,在中可得的大小,運用余弦定理得到關于的一元二次方程,通過解方程可得的值;(2)中先在中由正弦定理得,并根據(jù)題意判斷出為鈍角,根據(jù)求出.試題解析:(1)由題意可得,在中,由余弦定理得,所以,整理得,解得:.故的長為.(2)在中,由正弦定理得,即所以,所以.因為點在邊上,所以,而,所以只能為鈍角,所以,所以.20、(1),(2)【解析】

(1)根據(jù)與的關系,利用臨差法得到,知公差為3;再由代入遞推關系求;(2)觀察數(shù)列的通項公式,相鄰兩項的和有規(guī)律,故采用并項求和法,求其前項和.【詳解】(1)對任意,有,①當時,有,解得或.當時,有.②①-②并整理得.而數(shù)列的各項均為正數(shù),.當時,,此時成立;當時,,此時,不成立,舍去.,.(2).【點睛】已知與的遞推關系,利用臨差法求時,要注意對下標與分兩種情況,即;數(shù)列求和時要先觀察通項特點,再決定采用什么方法.21、(1);(2)【解析】

(1)不等式可化為,而解集為,可利用韋達定理或直接代入即可得到答案;(2)法一:討論和時,分離參數(shù)利用均值不等式即可得到取值范圍;法二:利用二次函數(shù)在上大于等于0恒成立,即可得到取值范圍.【詳解】(1)法一:不等式可化為,其解集為,由根與系數(shù)的關系可知,解得,經(jīng)檢驗時滿足題意.法二:由題意知,原不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論