版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆廣西百色市數(shù)學(xué)高一下期末經(jīng)典試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)2.若,則的最小值是()A. B. C. D.3.在中,,則()A. B. C. D.4.為了得到函數(shù)的圖像,可以將函數(shù)的圖像()A.向右平移個(gè)長(zhǎng)度單位 B.向左平移個(gè)長(zhǎng)度單位C.向右平移個(gè)長(zhǎng)度單位 D.向左平移個(gè)長(zhǎng)度單位5.是等差數(shù)列的前n項(xiàng)和,如果,那么的值是()A.12 B.24 C.36 D.486.某三棱錐的左視圖、俯視圖如圖所示,則該三棱錐的體積是()A.3 B.2 C. D.17.要得到函數(shù)y=cos4x+πA.向左平移π3個(gè)單位長(zhǎng)度 B.向右平移πC.向左平移π12個(gè)單位長(zhǎng)度 D.向右平移π8.已知函數(shù)在上是減函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.正方體中,直線與所成角的余弦值為()A. B. C. D.10.已知某圓柱的底面周長(zhǎng)為12,高為2,矩形是該圓柱的軸截面,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為()A. B. C.3 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角△中,角所對(duì)應(yīng)的邊分別為,若,則角等于________.12.已知向量為單位向量,向量,且,則向量的夾角為__________.13.在平面直角坐標(biāo)系中,定義兩點(diǎn)之間的直角距離為:現(xiàn)有以下命題:①若是軸上的兩點(diǎn),則;②已知,則為定值;③原點(diǎn)與直線上任意一點(diǎn)之間的直角距離的最小值為;④若表示兩點(diǎn)間的距離,那么.其中真命題是__________(寫出所有真命題的序號(hào)).14.已知滿足約束條件,則的最大值為__________.15.在棱長(zhǎng)均為2的三棱錐中,分別為上的中點(diǎn),為棱上的動(dòng)點(diǎn),則周長(zhǎng)的最小值為________.16.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當(dāng)時(shí),,求的值;(2)令,若對(duì)任意都有恒成立,求的最大值.18.已知向量,.(I)若,共線,求的值.(II)若,求的值;(III)當(dāng)時(shí),求與夾角的余弦值.19.正項(xiàng)數(shù)列的前項(xiàng)和為,且.(Ⅰ)試求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),求的前項(xiàng)和為.(Ⅲ)在(Ⅱ)的條件下,若對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.20.正四棱錐中,,分別為,的中點(diǎn).(1)求證:平面;(2)若,求異面直線和所成角的余弦值.21.在ΔABC中,角A,B,C,的對(duì)邊分別是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在線段BC上,且BD=DE=EC,AE=23
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
將函數(shù)化為的形式后再進(jìn)行判斷便可得到結(jié)論.【詳解】由題意得,∵,且函數(shù)的最小正周期為,∴函數(shù)時(shí)最小正周期為的偶函數(shù).故選A.【點(diǎn)睛】判斷函數(shù)最小正周期時(shí),需要把函數(shù)的解析式化為或的形式,然后利用公式求解即可得到周期.2、A【解析】,則,當(dāng)且僅當(dāng)取等號(hào).所以選項(xiàng)是正確的.點(diǎn)睛:本題主要考查基本不等式,其難點(diǎn)主要在于利用三角形的一邊及這條邊上的高表示內(nèi)接正方形的邊長(zhǎng).在用基本不等式求最值時(shí),應(yīng)具備三個(gè)條件:一正二定三相等.①一正:關(guān)系式中,各項(xiàng)均為正數(shù);②二定:關(guān)系式中,含變量的各項(xiàng)的和或積必須有一個(gè)為定值;③三相等:含變量的各項(xiàng)均相等,取得最值.3、B【解析】
根據(jù)向量的三角形法則進(jìn)行轉(zhuǎn)化求解即可.【詳解】∵,∴,又則故選:B【點(diǎn)睛】本題考查向量加減混合運(yùn)算及其幾何意義,靈活應(yīng)用向量運(yùn)算的三角形法則即可求解,屬于基礎(chǔ)題.4、D【解析】
根據(jù)三角函數(shù)的圖象平移的原則,即左加右減,即可得答案.【詳解】由,可以將函數(shù)圖象向左平移個(gè)長(zhǎng)度單位即可,故選:D.【點(diǎn)睛】本題考查三角函數(shù)的平移變換,求解時(shí)注意平移變換是針對(duì)自變量而言的,同時(shí)要注意是由誰變換到誰.5、B【解析】
由等差數(shù)列的性質(zhì):若m+n=p+q,則即可得.【詳解】故選B【點(diǎn)睛】本題考查等比數(shù)列前n項(xiàng)和的求解和性質(zhì)的應(yīng)用,是基礎(chǔ)題型,解題中要注意認(rèn)真審題,注意下標(biāo)的變化規(guī)律,合理地進(jìn)行等價(jià)轉(zhuǎn)化.6、D【解析】
根據(jù)三視圖高平齊的原則得知錐體的高,結(jié)合俯視圖可計(jì)算出底面面積,再利用錐體體積公式可得出答案.【詳解】由三視圖“高平齊”的原則可知該三棱錐的高為,俯視圖的面積為錐體底面面積,則該三棱錐的底面面積為,因此,該三棱錐的體積為,故選D.【點(diǎn)睛】本題考查利用三視圖求幾何體的體積,解題時(shí)充分利用三視圖“長(zhǎng)對(duì)正,高平齊,寬相等”的原則得出幾何體的某些數(shù)據(jù),并判斷出幾何體的形狀,結(jié)合相關(guān)公式進(jìn)行計(jì)算,考查空間想象能力,屬于中等題.7、C【解析】
先化簡(jiǎn)得y=cos【詳解】因?yàn)閥=cos所以要得到函數(shù)y=cos4x+π3的圖像,只需將函數(shù)故選:C【點(diǎn)睛】本題主要考查三角函數(shù)的圖像的變換,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.8、C【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性,結(jié)合對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性同增異減可知,結(jié)合對(duì)數(shù)型函數(shù)的定義域得,解得.故選:C【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.9、C【解析】
作出相關(guān)圖形,通過平行將異面直線所成角轉(zhuǎn)化為共面直線所成角.【詳解】作出相關(guān)圖形,由于,所以直線與所成角即為直線與所成角,由于為等邊三角形,于是所成角余弦值為,故答案選C.【點(diǎn)睛】本題主要考查異面直線所成角的余弦值,難度不大.10、A【解析】
由圓柱的側(cè)面展開圖是矩形,利用勾股定理求解.【詳解】圓柱的側(cè)面展開圖如圖,圓柱的側(cè)面展開圖是矩形,且矩形的長(zhǎng)為12,寬為2,則在此圓柱側(cè)面上從到的最短路徑為線段,.故選:A.【點(diǎn)睛】本題考查圓柱側(cè)面展開圖中的最短距離問題,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:利用正弦定理化簡(jiǎn),得,因?yàn)?,所以,因?yàn)闉殇J角,所以.考點(diǎn):正弦定理的應(yīng)用.【方法點(diǎn)晴】本題主要考查了正弦定理的應(yīng)用、以及特殊角的三角函數(shù)值問題,其中解答中涉及到解三角形中的邊角互化,轉(zhuǎn)化為三角函數(shù)求值的應(yīng)用,解答中熟練掌握正弦定理的變形,完成條件的邊角互化是解答的關(guān)鍵,注重考查了分析問題和解答問題的能力,同時(shí)注意條件中銳角三角形,屬于中檔試題.12、【解析】因?yàn)?,所以,所以,所以,則.13、①②④【解析】
根據(jù)新定義的直角距離,結(jié)合具體選項(xiàng),進(jìn)行逐一分析即可.【詳解】對(duì)①:因?yàn)槭禽S上的兩點(diǎn),故,則,①正確;對(duì)②:根據(jù)定義因?yàn)?,故,②正確;對(duì)③:根據(jù)定義,當(dāng)且僅當(dāng)時(shí),取得最小值,故③錯(cuò)誤;對(duì)④:因?yàn)?,由不等式,即可得,故④正確.綜上正確的有①②④故答案為:①②④.【點(diǎn)睛】本題考查新定義問題,涉及同角三角函數(shù)關(guān)系,絕對(duì)值三角不等式,屬綜合題.14、57【解析】
作出不等式組所表示的可行域,平移直線,觀察直線在軸的截距取最大值時(shí)的最優(yōu)解,再將最優(yōu)解代入目標(biāo)函數(shù)可得出目標(biāo)函數(shù)的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:平移直線,當(dāng)直線經(jīng)過可行域的頂點(diǎn)時(shí),該直線在軸上的截距取最大值,此時(shí),取最大值,即,故答案為.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值問題,一般利用平移直線結(jié)合在坐標(biāo)軸上的截距取最值時(shí),找最優(yōu)解求解,考查數(shù)形結(jié)合數(shù)學(xué)思想,屬于中等題.15、【解析】
易證明中,且周長(zhǎng)為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長(zhǎng)均為2的三棱錐,故該三棱錐的四個(gè)面均為正三角形.又因?yàn)?故.故.且分別為上的中點(diǎn),故.故周長(zhǎng)為.故只需求的最小值即可.易得當(dāng)時(shí)取得最小值為.故周長(zhǎng)的最小值為.故答案為:【點(diǎn)睛】本題主要考查了立體幾何中的距離最值問題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.16、【解析】
由題意利用兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當(dāng)且僅當(dāng),時(shí),取等號(hào).故的最大值為,故答案為:.【點(diǎn)睛】本題主要考查兩個(gè)向量共線的性質(zhì),考查兩個(gè)向量坐標(biāo)形式的運(yùn)算和基本不等式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)得,得或,結(jié)合取值范圍求解;(2)結(jié)合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對(duì)任意都有恒成立,即對(duì)恒成立,只需,解得:,所以的最大值為.【點(diǎn)睛】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關(guān)系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問題.18、(I);(II);(III)【解析】
(1)根據(jù)題意,由向量平行的坐標(biāo)公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,則有,結(jié)合向量數(shù)量積的坐標(biāo)可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根據(jù)題意,由x的值可得的坐標(biāo),由向量的坐標(biāo)計(jì)算公式可得、和的值,結(jié)合,計(jì)算可得答案.解:(I)∵與共線,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)將所給條件式子兩邊同時(shí)平方,利用遞推法可得的表達(dá)式,由兩式相減,變形即可證明數(shù)列為等差數(shù)列,進(jìn)而結(jié)合首項(xiàng)與公差求得的通項(xiàng)公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即可求得數(shù)列的通項(xiàng)公式,利用裂項(xiàng)法即可求得前項(xiàng)和.(Ⅲ)先求得的取值范圍,結(jié)合不等式,即可求得的取值范圍.【詳解】(Ⅰ)因?yàn)檎?xiàng)數(shù)列的前項(xiàng)和為,且化簡(jiǎn)可得由遞推公式可得兩式相減可得,變形可得即,由正項(xiàng)等比數(shù)列可得所以而當(dāng)時(shí),解得所以數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列因而(Ⅱ)由(Ⅰ)可知?jiǎng)t代入中可得所以(Ⅲ)由(Ⅱ)可知?jiǎng)t,所以數(shù)列為單調(diào)遞增數(shù)列,則且當(dāng)時(shí),,即所以因?yàn)閷?duì)一切的恒成立則滿足,解不等式組可得即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式與求和公式的應(yīng)用,裂項(xiàng)求和法的應(yīng)用,數(shù)列的單調(diào)性與不等式關(guān)系,綜合性強(qiáng),屬于中檔題.20、(1)見解析(2)【解析】
(1)取的中點(diǎn),連接、,可得四邊形為平行四邊形,得到,由線面平行的判定可得平面;(2)連接交于,則為的中點(diǎn),結(jié)合為的中點(diǎn),得,可得(或其補(bǔ)角)為異面直線和所成角,在正四棱錐中,由為的中點(diǎn),且,可得,設(shè),求解三角形可得異面直線和所成角的余弦值.【詳解】(1)取的中點(diǎn),連接、,是的中點(diǎn),且,在正四棱錐中,底面為正方形,且,又為的中點(diǎn),且,且,則四邊形為平行四邊形,,平面,平面,平面;(2)連接交于,則為的中點(diǎn),又為的中點(diǎn),,又,(或其補(bǔ)角)為異面直線和所成角,在正四棱錐中,由為的中點(diǎn),且,,設(shè),則,,,則,因此,異面直線和所成角的余弦值為.【點(diǎn)睛】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓(xùn)練了異面直線所成角的求法,是中檔題.21、(1)32+【解析】
(1)根據(jù)正弦定理化簡(jiǎn)邊角關(guān)系式,可整理出余弦定理形式,得到cosB=12;再根據(jù)正弦定理求得sinC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版人流手術(shù)術(shù)后并發(fā)癥預(yù)防與治療合同3篇
- 倉儲(chǔ)物流托盤租賃價(jià)格2025版3篇
- 2025版外貿(mào)業(yè)務(wù)員兼職合作合同3篇
- 桶裝水供應(yīng)鏈優(yōu)化2025年度協(xié)議3篇
- 二零二五年度企業(yè)員工意外傷害賠償協(xié)議3篇
- 2025年農(nóng)藥產(chǎn)品安全監(jiān)測(cè)與風(fēng)險(xiǎn)預(yù)警服務(wù)合同3篇
- 二零二五年度農(nóng)田流轉(zhuǎn)及種植合作合同范本
- 2025年度人工智能輔助醫(yī)療合作協(xié)議范本模板4篇
- 二零二五年度寵物活體品種鑒定與評(píng)估合同4篇
- 乙方甲方2025年度原材料采購合同2篇
- 2024公路瀝青路面結(jié)構(gòu)內(nèi)部狀況三維探地雷達(dá)快速檢測(cè)規(guī)程
- 2024年高考真題-地理(河北卷) 含答案
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 食材配送服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 足療店?duì)I銷策劃方案
- 封條(標(biāo)準(zhǔn)A4打印封條)
- 2024年北京控股集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 延遲交稿申請(qǐng)英文
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十章動(dòng)作技能的指導(dǎo)與示范
- 石油天然氣建設(shè)工程交工技術(shù)文件編制規(guī)范(SYT68822023年)交工技術(shù)文件表格儀表自動(dòng)化安裝工程
- 中醫(yī)治療“濕疹”醫(yī)案72例
評(píng)論
0/150
提交評(píng)論