版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣西南寧市外國語學(xué)校高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知集合,對于滿足集合A的所有實數(shù)t,使不等式恒成立的x的取值范圍為A. B.C. D.2.若,則下列不等式成立的是()A. B.C. D.3.已知向量,滿足,,,則()A.3 B.2 C.1 D.04.直線與圓的位置關(guān)系是()A.相切 B.相離C.相交但不過圓心 D.相交且過圓心5.設(shè),則的大小關(guān)系為()A. B. C. D.6.已知集合A=-1,A.-1,??0,??17.下列關(guān)于極限的計算,錯誤的是()A.B.C.D.已知,則8.甲、乙、丙三人隨機排成一排,乙站在中間的概率是()A. B. C. D.9.為等差數(shù)列的前項和,且,.記,其中表示不超過的最大整數(shù),如,.?dāng)?shù)列的前項和為()A. B. C. D.10.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)二、填空題:本大題共6小題,每小題5分,共30分。11.公比為的無窮等比數(shù)列滿足:,,則實數(shù)的取值范圍為________.12.若首項為,公比為()的等比數(shù)列滿足,則的取值范圍是________.13.已知為直線上一點,過作圓的切線,則切線長最短時的切線方程為__________.14.如圖,在直角梯形中,//是線段上一動點,是線段上一動點,則的最大值為________.15.某四棱錐的三視圖如圖所示,如果網(wǎng)格紙上小正方形的邊長為1,那么該四棱錐最長棱的棱長為.16.某縣現(xiàn)有高中數(shù)學(xué)教師500人,統(tǒng)計這500人的學(xué)歷情況,得到如下餅狀圖,該縣今年計劃招聘高中數(shù)學(xué)新教師,只招聘本科生和研究生,使得招聘后該縣高中數(shù)學(xué)??茖W(xué)歷的教師比例下降到,且研究生的比例保持不變,則該縣今年計劃招聘的研究生人數(shù)為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)二次函數(shù).(1)若對任意實數(shù),恒成立,求實數(shù)x的取值范圍;(2)若存在,使得成立,求實數(shù)m的取值范圍.18.已知向量垂直于向量,向量垂直于向量.(1)求向量與的夾角;(2)設(shè),且向量滿足,求的最小值;(3)在(2)的條件下,隨機選取一個向量,求的概率.19.已知圓,直線(1)求證:直線過定點;(2)求直線被圓所截得的弦長最短時的值;(3)已知點,在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點N的坐標(biāo)及該常數(shù).20.一個盒子中裝有4張卡片,每張卡片上寫有1個數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機抽取卡片.(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.21.已知圓:與圓:.(1)求兩圓的公共弦長;(2)過平面上一點向圓和圓各引一條切線,切點分別為,設(shè),求證:平面上存在一定點使得到的距離為定值,并求出該定值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由條件求出t的范圍,不等式變形為恒成立,即不等式恒成立,再由不等式的左邊兩個因式同為正或同為負(fù)處理.【詳解】由得,,
不等式恒成立,即不等式恒成立,即不等式恒成立,
只需或恒成立,
只需或恒成立,
只需或即可.
故選:B.【點睛】本題考查了一元二次不等式的解法問題,難度較大,充分利用恒成立的思想解題是關(guān)鍵.2、D【解析】
取特殊值檢驗,利用排除法得答案?!驹斀狻恳驗椋瑒t當(dāng)時,故A錯;當(dāng)時,故B錯;當(dāng)時,,故C錯;因為且,所以故選D.【點睛】本題考查不等式的基本性質(zhì),屬于簡單題。3、A【解析】
由,求出,代入計算即可.【詳解】由題意,則.故答案為A.【點睛】本題考查了向量的數(shù)量積,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.4、C【解析】圓心到直線的距離,據(jù)此可知直線與圓的位置關(guān)系為相交但不過圓心.本題選擇C選項.5、B【解析】
不難發(fā)現(xiàn)從而可得【詳解】,故選B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較數(shù)大小.6、B【解析】
直接利用交集運算得到答案.【詳解】因為A=-1,??故答案選B【點睛】本題考查了交集運算,屬于簡單題.7、B【解析】
先計算每個極限,再判斷,如果是數(shù)列和的極限還需先求和,再求極限.【詳解】,A正確;∵,∴,B錯;,C正確;若,需按奇數(shù)項和偶數(shù)項分別求和后再極限,即,D正確.故選:B.【點睛】本題考查數(shù)列的極限,掌握極限運算法則是解題基礎(chǔ).在求數(shù)列前n項和的極限時,需先求出數(shù)列的前n項和,再對和求極限,不能對每一項求極限再相加.8、B【解析】
先求出甲、乙、丙三人隨機排成一排的基本事件的個數(shù),再求出乙站在中間的基本事件的個數(shù),再求概率即可.【詳解】解:三個人排成一排的所有情況有:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙乙甲,丙甲乙共6種,乙在中間有2種,所以乙在中間的概率為,故選B.【點睛】本題考查了古典概型,屬基礎(chǔ)題.9、D【解析】
利用等差數(shù)列的通項公式與求和公式可得,再利用,可得,,.即可得出.【詳解】解:為等差數(shù)列的前項和,且,,.可得,則公差.,,則,,,.?dāng)?shù)列的前項和為:.故選:.【點睛】本題考查了等差數(shù)列的通項公式與求和公式、對數(shù)運算性質(zhì)、取整函數(shù),考查了推理能力與計算能力,屬于中檔題.10、B【解析】
由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【詳解】由題,因為為一元二次不等式,所以a≠0又因為ax所以a>0Δ=故選B【點睛】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
依據(jù)等比數(shù)列的定義以及無窮等比數(shù)列求和公式,列出方程,即可求出的表達式,再利用求值域的方法求出其范圍?!驹斀狻坑深}意有,即,因為,所以?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應(yīng)用以及基本函數(shù)求值域的方法。12、【解析】
由題意可得且,即且,,化簡可得由不等式的性質(zhì)可得的取值范圍.【詳解】解:,故有且,化簡可得且即故答案為:【點睛】本題考查數(shù)列極限以及不等式的性質(zhì),屬于中檔題.13、或【解析】
利用切線長最短時,取最小值找點:即過圓心作直線的垂線,求出垂足點.就切線的斜率是否存在分類討論,結(jié)合圓心到切線的距離等于半徑得出切線的方程.【詳解】設(shè)切線長為,則,所以當(dāng)切線長取最小值時,取最小值,過圓心作直線的垂線,則點為垂足點,此時,直線的方程為,聯(lián)立,得,點的坐標(biāo)為.①若切線的斜率不存在,此時切線的方程為,圓心到該直線的距離為,合乎題意;②若切線的斜率存在,設(shè)切線的方程為,即.由題意可得,化簡得,解得,此時,所求切線的方程為,即.綜上所述,所求切線方程為或,故答案為或.【點睛】本題考查過點的圓的切線方程的求解,考查圓的切線長相關(guān)問題,在過點引圓的切線問題時,要對直線的斜率是否存在進行分類討論,另外就是將直線與圓相切轉(zhuǎn)化為圓心到直線的距離等于半徑長,考查分析問題與解決問題的能力,屬于中等題.14、2【解析】
建立平面直角坐標(biāo)系,得到相應(yīng)點的坐標(biāo)及向量的坐標(biāo),把,利用向量的數(shù)量積轉(zhuǎn)化為的函數(shù),即可求解.【詳解】建立如圖所示的平面直角坐標(biāo)系,因為,,所以,因為,,所以,因為,所以當(dāng)時,取得最大值,最大值為.故答案為:.【點睛】本題主要考查了平面向量的線性運算,以及向量的數(shù)量積的運算的應(yīng)用,其中解答中建立平面直角坐標(biāo)系,結(jié)合向量的線性運算和數(shù)量積的運算,得到的函數(shù)關(guān)系式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.15、【解析】
先通過拔高法還原三視圖為一個四棱錐,再根據(jù)圖像找到最長棱計算即可。【詳解】根據(jù)拔高法還原三視圖,可得斜棱長最長,所以斜棱長為。【點睛】此題考查簡單三視圖還原,關(guān)鍵點通過拔高法將三視圖還原易求解,屬于較易題目。16、50【解析】
先計算出招聘后高中數(shù)學(xué)教師總?cè)藬?shù),然后利用比例保持不變,得到該縣今年計劃招聘的研究生人數(shù).【詳解】招聘后該縣高中數(shù)學(xué)??茖W(xué)歷的教師比例下降到,則招聘后,該縣高中數(shù)學(xué)教師總?cè)藬?shù)為,招聘后研究生的比例保持不變,該縣今年計劃招聘的研究生人數(shù)為.【點睛】本題主要考查學(xué)生的閱讀理解能力和分析能力,從題目中提煉關(guān)鍵字眼“比例保持不變”是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)是關(guān)于m的一次函數(shù),計算得到答案.(2)易知,討論和兩種情況計算得到答案.【詳解】(1)對任意實數(shù),恒成立,即對任意實數(shù)恒成立,是關(guān)于m的一次函數(shù),,解得或,所以實數(shù)x的取值范圍是.(2)存在,使得成立,即,顯然.(i)當(dāng)時,要使成立,即需成立,即需成立.,(當(dāng)且僅當(dāng)時等號成立),,.(ii)當(dāng)時,要使成立,即需成立,即需成立,,(當(dāng)且僅當(dāng)時等號成立),.綜上得實數(shù)m的取值范圍是.【點睛】本題考查了恒成立問題和存在性問題,意在考查學(xué)生的綜合應(yīng)用能力.18、(1);(2);(3).【解析】
(1)根據(jù)向量的垂直,轉(zhuǎn)化出方程組,求解方程組即可;(2)將向量賦予坐標(biāo),求得向量對應(yīng)點的軌跡方程,將問題轉(zhuǎn)化為圓外一點,到圓上一點的距離的最值問題,即可求解;(3)根據(jù)余弦定理,解得,以及的臨界狀態(tài)時,對應(yīng)的圓心角的大小,利用幾何概型的概率計算公式,即可求解.【詳解】(1)因為故可得,解得①②由①-②可得,解得,將其代入①可得,即將其代入②可得解得,又向量夾角的范圍為,故向量與的夾角為.(2)不妨設(shè),由可得.不妨設(shè)的起始點為坐標(biāo)原點,終點為C.因此,點C落在以)為圓心,1為半徑的圓上(如圖).因為,即由圓的特點可知的最小值為,即:.(3)當(dāng)時,因為,,滿足勾股定理,故容易得.當(dāng)時,假設(shè)此時點落在如圖所示的F點處.如圖所示.因為,由余弦定理容易得,故.所以,本題化為,在半圓上任取一點C,點C落在弧CF上的概率.由幾何概型的概率計算可知:的概率即為圓心角的弧度除以,即.【點睛】本題考查向量垂直時數(shù)量積的表示,以及利用解析的手段解決向量問題的能力,還有幾何概型的概率計算,涉及圓方程的求解,以及余弦定理.本題屬于綜合題,值得總結(jié).19、(1)直線過定點(2).(3)在直線上存在定點,使得為常數(shù).【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點A的坐標(biāo).(Ⅱ)當(dāng)AC⊥l時,所截得弦長最短,由題知,r=2,求出AC的斜率,利用點到直線的距離,轉(zhuǎn)化求解即可.(Ⅲ)由題知,直線MC的方程為,假設(shè)存在定點N滿足題意,則設(shè)P(x,y),,得,且,求出λ,然后求解比值.詳解:(Ⅰ)依題意得,令且,得直線過定點(Ⅱ)當(dāng)時,所截得弦長最短,由題知,,得,由得(Ⅲ)法一:由題知,直線的方程為,假設(shè)存在定點滿足題意,則設(shè),,得,且整理得,上式對任意恒成立,且解得,說以(舍去,與重合),綜上可知,在直線上存在定點,使得為常數(shù)點睛:過定點的直線系A(chǔ)1x+B1y+C1+λ(A2x+B2y+C2)=0表示通過兩直線l1∶A1x+B1y+C1=0與l2∶A2x+B2y+C2=0交點的直線系,而這交點即為直線系所通過的定點.20、(1)(2)【解析】
古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以列舉出所有事件,概率問題同其他的知識點結(jié)合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(1)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果,可以列舉出,而滿足條件的事件數(shù)字之和大于7的,可以從列舉出的結(jié)果中看出.(2)列舉出每次抽1張,連續(xù)抽取兩張全部可能的基本結(jié)果,而滿足條件的事件是兩次抽取中至少一次抽到數(shù)字3,從前面列舉出的結(jié)果中找出來.解:(Ⅰ)設(shè)A表示事件“抽取3張卡片上的數(shù)字之和大于或等于7”,任取三張卡片,三張卡片上的數(shù)字全部可能的結(jié)果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4種,數(shù)字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3種,所以P(A)=.(Ⅱ)設(shè)B表示事件“至少一次抽到2”,第一次抽1張,放回后再抽取1張的全部可能結(jié)果為:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個事件B包含的結(jié)果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度高新技術(shù)企業(yè)項目合同擔(dān)保形式解析3篇
- 二零二四年品牌授權(quán)與連鎖經(jīng)營合同
- 二零二五年度酒店客房租賃與品牌合作合同3篇
- 2025年度承臺施工進度管理合同3篇
- 2025年度祠堂文化展示館運營承包合同樣本3篇
- 二零二五版橋梁隧道建設(shè)工程承包合同2篇
- 2025年度大數(shù)據(jù)分析處理零工計件勞務(wù)分包合同范本4篇
- 2024鐵路貨物運輸合同示范文本
- 2024石油公司與原油購買方之間的購銷合同
- 年度大健康戰(zhàn)略市場分析及競爭策略分析報告
- 危險性較大分部分項工程及施工現(xiàn)場易發(fā)生重大事故的部位、環(huán)節(jié)的預(yù)防監(jiān)控措施
- 繼電保護試題庫(含參考答案)
- 《榜樣9》觀后感心得體會四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識》備考題庫(含答案)
- 《住院患者身體約束的護理》團體標(biāo)準(zhǔn)解讀課件
- 酒店一線員工績效考核指標(biāo)體系優(yōu)化研究
- 成都市優(yōu)質(zhì)結(jié)構(gòu)工程申報指南
- 小學(xué)四年級上冊-數(shù)學(xué)口算題精選(分頁打印)
- 【納棺夫日記】
- 《鐵路貨車運用維修規(guī)程》2018年10月
- 水利工程竣工驗收報告表格(共5頁)
評論
0/150
提交評論