版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省宜賓市敘州區(qū)一中2023-2024學年數學高一下期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在三棱錐中,平面,,,,,則三棱錐外接球的體積為()A. B. C. D.2.在中,內角A,B,C所對的邊分別是a,b,c,若,,則的面積是()A. B. C. D.3.設,為兩個平面,則能斷定∥的條件是()A.內有無數條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面4.已知函數,則()A.2 B.-2 C.1 D.-15.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>26.函數的零點有兩個,求實數的取值范圍()A. B.或 C.或 D.7.在天氣預報中,有“降水概率預報”,例如預報“明天降水的概率為”,這是指()A.明天該地區(qū)有的地方降水,有的地方不降水B.明天該地區(qū)有的時間降水,其他時間不降水C.明天該地區(qū)降水的可能性為D.氣象臺的專家中有的人認為會降水,另外有的專家認為不降水8.設變量、滿足約束條件,則目標函數的最大值為()A.2 B.3 C.4 D.99.在等差數列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+210.高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數.例如:,,已知函數,則函數的值域為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數的圖象如下,則的值為__________.12.已知函數,關于此函數的說法:①為周期函數;②有對稱軸;③為的對稱中心;④;正確的序號是_________.13.設數列的前n項和為,關于數列,有下列三個命題:(1)若既是等差數列又是等比數列,則;(2)若,則是等差數列:(3)若,則是等比數列這些命題中,真命題的序號是__________________________.14.如圖,正方形中,分別為邊上點,且,,則________.15.已知向量,,則在方向上的投影為______.16.已知圓錐的頂點為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側面積為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數的最小正周期為.將函數的圖象上各點的橫坐標變?yōu)樵瓉淼谋叮v坐標變?yōu)樵瓉淼谋?,得到函數的圖象.(1)求的值及函數的解析式;(2)求的單調遞增區(qū)間及對稱中心18.(1)求證:(2)請利用(1)的結論證明:(3)請你把(2)的結論推到更一般的情形,使之成為推廣后的特例,并加以證明:(4)化簡:.19.如圖所示,是邊長為的正三角形,點四等分線段.(Ⅰ)求的值;(Ⅱ)若點是線段上一點,且,求實數的值.20.在中,角、、的對邊分別為、、,為的外接圓半徑.(1)若,,,求;(2)在中,若為鈍角,求證:;(3)給定三個正實數、、,其中,問:、、滿足怎樣的關系時,以、為邊長,為外接圓半徑的不存在,存在一個或存在兩個(全等的三角形算作同一個)?在存在的情兄下,用、、表示.21.已知向量,滿足,,.(1)求向量,所成的角的大小;(2)若,求實數的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
在三棱錐中,求得,又由底面,所以,在直角中,求得,進而得到三棱錐外接球的直徑,得到,利用體積公式,即可求解.【詳解】由題意知,在三棱錐中,,,,所以,又由底面,所以,在直角中,,所以,根據球的性質,可得三棱錐外接球的直徑為,即,所以球的體積為,故選B.【點睛】本題主要考查了與球有關的組合體中球的體積的計算,其中解答中根據組合體的結構特征和球的性質,準確求解球的半徑是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.2、C【解析】
根據題意,利用余弦定理可得ab,再利用三角形面積計算公式即可得出答案.【詳解】由c2=(a﹣b)2+6,可得c2=a2+b2﹣2ab+6,由余弦定理:c2=a2+b2﹣2abcosC=a2+b2﹣ab,所以:a2+b2﹣2ab+6=a2+b2﹣ab,所以ab=6;則S△ABCabsinC;故選:C.【點睛】本題考查余弦定理、三角形面積計算公式,關鍵是利用余弦定理求出ab的值.3、C【解析】
對四個選項逐個分析,可得出答案.【詳解】對于選項A,當,相交于直線時,內有無數條直線與平行,即A錯誤;對于選項B,當,相交于直線時,存在直線滿足:既與平行又不在兩平面內,該直線平行于,,故B錯誤;對于選項C,設直線AB垂直于,平面,垂足分別為A,B,假設與不平行,設其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學生的空間想象能力,屬于中檔題.4、B【解析】
根據分段函數的表達式,直接代入即可得到結論.【詳解】由分段函數的表達式可知,則,故選:.【點睛】本題主要考查函數值的計算,根據分段函數的表達式求解是解決本題的關鍵,屬于容易題.5、D【解析】對于A,當ab<0時不成立;對于B,若x<0,則x+=-≤-2=-4,當且僅當x=-2時,等號成立,因此B選項不成立;對于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項不成立;對于D,若x<0,則2x+2-x>2成立.故選D.6、B【解析】
由題意可得,的圖象(紅色部分)和直線有2個交點,數形結合求得的范圍.【詳解】由題意可得的圖象(紅色部分)和直線有2個交點,如圖所示:故有或,故選:B.【點睛】已知函數零點(方程根)的個數,求參數取值范圍的三種常用的方法:(1)直接法,直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍;(2)分離參數法,先將參數分離,轉化成求函數值域問題加以解決;(3)數形結合法,先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.一是轉化為兩個函數的圖象的交點個數問題,畫出兩個函數的圖象,其交點的個數就是函數零點的個數,二是轉化為的圖象的交點個數問題.7、C【解析】
預報“明天降水的概率為”,屬于隨機事件,可能下雨,也可能不下雨,即可得到答案.【詳解】由題意,天氣預報中,有“降水概率預報”,例如預報“明天降水的概率為”,這是指明天下雨的可能性是,故選C.【點睛】本題主要考查了隨機事件的概念及其概率,其中正確理解隨機事件的概率的概念是解答此類問題的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8、D【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,聯立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數得結論.【詳解】畫出滿足約束條件的可行域,如圖,畫出可行域,,,,平移直線,由圖可知,直線經過時目標函數有最大值,的最大值為9.故選D.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數求出最值.9、C【解析】
直接利用等差數列公式解方程組得到答案.【詳解】aaa1故答案選C【點睛】本題考查了等差數列的通項公式,屬于基礎題型.10、D【解析】
分離常數法化簡f(x),根據新定義即可求得函數y=[f(x)]的值域.【詳解】,又>0,∴,∴∴當x∈(1,1)時,y=[f(x)]=1;當x∈[1,)時,y=[f(x)]=1.∴函數y=[f(x)]的值域是{1,1}.故選D.【點睛】本題考查了新定義的理解和應用,考查了分離常數法求一次分式函數的值域,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由函數的圖象的頂點坐標求出,由半個周期求出,最后將特殊點的坐標求代入解析式,即可求得的值.【詳解】解:由圖象可得,,得.,將點代入函數解析式,得,,,又因為,所以故答案為:【點睛】本題考查由的部分圖象確定其解析式.(1)根據函數的最高點的坐標確定(2)根據函數零點的坐標確定函數的周期求(3)利用最值點的坐標同時求的取值,即可得到函數的解析式.12、①②④【解析】
由三角函數的性質及,分別對各選項進行驗證,即可得出結論.【詳解】解:由函數,可得①,可得為周期函數,故①正確;②由,,故,是偶函數,故有對稱軸正確,故②正確;③為偶數時,,為奇數時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【點睛】本題主要考查三角函數的值域、周期性、對稱性等相關知識,綜合性大,屬于中檔題.13、(1)、(2)、(3)【解析】
利用等差數列和等比數列的定義,以及等差數列和等比數列的前項和形式,逐一判斷即可.【詳解】既是等差數列又是等比數列的數列是非零常數列,故(1)正確.等差數列的前項和是二次函數形式,且不含常數,故(2)正確.等比數列的前項和是常數加上常數乘以的形式,故(3)正確.故答案為:(1),(2),(3)【點睛】本題主要考查等差數列和等比數列的定義,同時考查了等差數列和等比數列的前項和,屬于簡單題.14、(或)【解析】
先設,根據題意得到,再由兩角和的正切公式求出,得到,進而可得出結果.【詳解】設,則所以,所以,因此.故答案為【點睛】本題主要考查三角恒等變換的應用,熟記公式即可,屬于常考題型.15、【解析】
由平面向量投影的定義可得出在方向上的投影為,從而可計算出結果.【詳解】設平面向量與的夾角為,則在方向上的投影為.故答案為:.【點睛】本題考查平面向量投影的計算,熟悉平面向量投影的定義是解題的關鍵,考查計算能力,屬于基礎題.16、【解析】
分析:先根據三角形面積公式求出母線長,再根據母線與底面所成角得底面半徑,最后根據圓錐側面積公式求結果.詳解:因為母線,所成角的余弦值為,所以母線,所成角的正弦值為,因為的面積為,設母線長為所以,因為與圓錐底面所成角為45°,所以底面半徑為因此圓錐的側面積為三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2)單調遞增區(qū)間為,,對稱中心為.【解析】
(1)整理可得:,利用其最小正周期為即可求得:,即可求得:,再利用函數圖象平移規(guī)律可得:,問題得解.(2)令,,解不等式即可求得的單調遞增區(qū)間;令,,解方程即可求得的對稱中心的橫坐標,問題得解.【詳解】解:(1),由,得.所以.于是圖象對應的解析式為.(2)由,得,所以函數的單調遞增區(qū)間為,.由,解得.所以的對稱中心為.【點睛】本題主要考查了二倍角公式、兩角和的正弦公式應用及三角函數性質,考查方程思想及轉化能力、計算能力,屬于中檔題。18、(1)證明見解析,(2)證明見解析,(3),證明見解析(4)【解析】
(1)右邊余切化正切后,利用二倍角的正切公式變形可證;(2)將(1)的結果變形為,然后將所證等式的右邊的正切化為余切即可得證;(3)根據(1)(2)的規(guī)律可得結果;(4)由(3)的結果可得.【詳解】(1)證明:因為,所以(2)因為,所以,所以(3)一般地:,證明:因為所以,以此類推得(4).【點睛】本題考查了歸納推理,考查了同角公式,考查了二倍角的正切公式,屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)以作為基底,表示出,然后利用數量積的運算法則計算即可求出;(Ⅱ)由平面向量數量積的運算及其運算可得:設,又,所以,解得,得解.【詳解】(Ⅰ)由題意得,則(Ⅱ)因為點Q是線段上一點,所以設,又,所以,故,解得,因此所求實數m的值為.【點睛】本題主要考查了平面向量的線性運算以及數量積的運算以及平面向量基本定理的應用,屬于中檔題.20、(1);(2)見解析;(3)見解析.【解析】
(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得證;(3)分類討論判斷三角形的形狀與兩邊、的關系,以及與直徑的大小的比較,分類討論即可.【詳解】(1)由正弦定理得,所以,由余弦定理得,化簡得.,解得;(2)由于為鈍角,則,由于,,得證;(3)①當或時,所求不存在;②當且時,,所求有且只有一個,此時;③當時,都是銳角,,存在且只有一個,;④當時,所求存在兩個,總是銳角,可以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版建筑垃圾清運及資源化利用合同3篇
- 二零二五年度招投標保證擔保合同協議書范本3篇
- 2025年度水電設施節(jié)能減排承包服務合同4篇
- 二零二五版MCN達人內容創(chuàng)作合作合同3篇
- 二零二五年度房產交易資金監(jiān)管協議4篇
- 2025年度模具行業(yè)市場調研與分析合同4篇
- 二零二五版交通事故致人受傷后續(xù)治療費用補償合同3篇
- 二零二五版煤礦安全生產標準化轉讓合同規(guī)范3篇
- 二零二五年度城市公交車車體廣告租賃服務協議4篇
- 2025年智慧農業(yè)設施建設項目合同3篇
- 勞務協議范本模板
- 2025大巴車租車合同范文
- 老年上消化道出血急診診療專家共識2024
- 人教版(2024)數學七年級上冊期末測試卷(含答案)
- 2024年國家保密培訓
- 2024年公務員職務任命書3篇
- CFM56-3發(fā)動機構造課件
- EPC總承包項目中的質量管理體系
- 高中物理考試成績分析報告
- 橫格紙A4打印模板
- 重癥血液凈化血管通路的建立與應用中國專家共識(2023版)
評論
0/150
提交評論