高考數(shù)學(xué)復(fù)習(xí) 數(shù)列性質(zhì)常見(jiàn)考題解析版_第1頁(yè)
高考數(shù)學(xué)復(fù)習(xí) 數(shù)列性質(zhì)常見(jiàn)考題解析版_第2頁(yè)
高考數(shù)學(xué)復(fù)習(xí) 數(shù)列性質(zhì)常見(jiàn)考題解析版_第3頁(yè)
高考數(shù)學(xué)復(fù)習(xí) 數(shù)列性質(zhì)常見(jiàn)考題解析版_第4頁(yè)
高考數(shù)學(xué)復(fù)習(xí) 數(shù)列性質(zhì)常見(jiàn)考題解析版_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二部分

題型方法

用數(shù)列性質(zhì)?;?/p>

題型一:數(shù)列公共項(xiàng)問(wèn)題1

【題目11已知集合M={s\s=2n+1,n6Z},N={t\t=4九一1,rzGZ},則TVfDN=()

A.0B.MC.ND.Z

X.___/

【解析】集合7W={s|s=2n+l,nEZ}={奇數(shù)},

N={址=4九一1,九ez}={…,一5,一1,3,7,…},??.NqM,貝IMCN=N.

故選:C

題目也已知無(wú)窮等比數(shù)列{Q/和{&}滿(mǎn)足的=3,⑥=。20,的各項(xiàng)和為9,則數(shù)列{心}的各項(xiàng)和為

【解析】設(shè)無(wú)窮等比數(shù)列{QJ的公比為q(qW1),

則lim(ai+a2H----Fan)=?-=9,即—=9,所以q=4,

Soo1—q1-qo

?9

所以4=。2=3x區(qū)"=2,

o

由勾=Q2九,知無(wú)窮等比數(shù)列仍九}的公比為q2=*,

y

所以螞("+勿+…+6n)=/i窿==

1~~9

故答案為:?jiǎn)?

5

'題目|三)已知數(shù)歹]{冊(cè)}是公差不為0的等差數(shù)歹!J,從該數(shù)歹!J中抽取某些項(xiàng):的,&5,如,時(shí)[,皈…,a.組成等

比數(shù)列.

(1)求公比;

(2)求數(shù)列{kn}的通項(xiàng)公式,求數(shù)列「半*的最大值項(xiàng).

\__________________________________________________________________________________________________

【解析】(1)設(shè){QJ的首項(xiàng)為Q1,

,a5,Qu成等比數(shù)列,,(Qi+4d尸=電(。1+16d).

Qi+4d6d

得出=2d,I.公比q=—

aiQi2d

n1n1—

(2)*.*akn=a[+(kn—l)d,又a1m=a-i,3,=2,31.

.「鼠+1)=九?(2?3-1—1+1)=幾?(2?3九-1)=-3九

[3》(n+l)-3"+1、3(n+1)

3-4n3-4n+1即4

若第n項(xiàng)最大,則滿(mǎn)足:?

n-3n、(n-1)-3n,3ZL>n-l

〔3?4九-3?4”T[4

力>3

二.,?,.3<?2<4,即n=3或?1=4時(shí),最大.

nW4

跟蹤訓(xùn)練[]已知等差數(shù)列{%}的前幾項(xiàng)和為倒,數(shù)列他}是公比為2的等比數(shù)列,且的=如=4,$3=21.

(1)求數(shù)列{斯}和數(shù)列仍“}的通項(xiàng)公式;

(2)現(xiàn)由數(shù)列{a“}與{fej按照下列方式構(gòu)造成新的數(shù)列{品}.

?1?

①將數(shù)列{源}中的項(xiàng)去掉數(shù)列{fej中的項(xiàng),按原來(lái)的順序構(gòu)成新數(shù)列{小};

②數(shù)列{冊(cè)}與{0}中的所有項(xiàng)分別構(gòu)成集合A與B,將集合AUB中的所有元素從小到大依次排列構(gòu)成

一個(gè)新數(shù)列{品}.

在以上兩個(gè)條件中任選一個(gè)作為已知條件,求數(shù)列{cj的前30項(xiàng)和.

【解析】(1)因?yàn)閿?shù)列仍”}為等比數(shù)列,且1=4,g=2,

所以勾=為x(T~2=4x2"7=2",

又因?yàn)镾3—ai+a2+a3—3a2=21,所以a2=7,又的=4,則d—3,

故等差數(shù)列{%}的通項(xiàng)公式為=4+(n—1)X3=3n+1;

(2)因?yàn)閍“=3n+1,6”=2",

所以瓦=2,62=4,b3—8,bi—Id,i>5—32,b6=64,br-128,

而a30=91,<131=94,a32=97,a33=100<fe7=128,

若選①,

因?yàn)閼c,i>4,%在數(shù)列{&}前30項(xiàng)內(nèi),如b3,氏不在數(shù)列{a,J前30項(xiàng)內(nèi),

則數(shù)列{品}前30項(xiàng)和為:S33—為一區(qū)一瓦=33x4+33產(chǎn)x3-(4+16+64)=1632;

若選②,

因?yàn)槌?,?均在數(shù)列{冊(cè)}前30項(xiàng)內(nèi),瓦,b3,d不在數(shù)列{a,J前30項(xiàng)內(nèi),

97y

則數(shù)列{cj前30項(xiàng)和為:$27+瓦+h+園=27x4+—x3+(2+8+32)=1203.

題型二:數(shù)列插項(xiàng)問(wèn)題

'題目也構(gòu)造數(shù)組,規(guī)則如下:第一組是兩個(gè)1,即(1,1),第二組是(1,2,1),第三組是(1,3,2,3,1),…,在每

一組的相鄰兩個(gè)數(shù)之間插入這兩個(gè)數(shù)的和得到下一組.設(shè)第九組中有冊(cè)個(gè)數(shù),且這冊(cè)個(gè)數(shù)的和為Snde

N).則$2021—()

2020202120212020

X____A__._3____+__2______________B_.__3____+_2_______________C_._3____+__1_______________D_.__3___+__1________________

【解析】設(shè)Sn中數(shù)組是(瓦,%…,演),即Sn—b1+62H----1■星,

則S“+1的數(shù)組是(仇,bi+b2,b2,62+63,…,瓦T,瓦T+瓦,瓦),

Sn+l比Sn的數(shù)組中多了這些數(shù):

bi+》2,慶十b3,…,既一2+既-1,bk-i+bk,

這些數(shù)相加,除瓦,既只出現(xiàn)1次外,戾,與,…,瓦T均出現(xiàn)2次,

而瓦=瓦=1,所以Sn+l=S”+2Sn—2=3Sn—2,

因此Sn+1—1=3(S?-1),

又g=2,S—1=1WO,所以{Sn—l}是等比數(shù)列,公比為3,S“T=3"T,

所以S”=3"T+1,從而5*2021=32020+1,

故選:D.

題目區(qū)在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的積,形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次“擴(kuò)展”.將

數(shù)列1,2進(jìn)行“擴(kuò)展”,第一次得到數(shù)列1,2,2;第二次得到數(shù)列1,2,2,4,2;….若第八次“擴(kuò)展”后得到的

數(shù)列為1,電,電,■■■,xt,2,并記%=log2(l?判?電…,?e?2),其中方=2"—1,?1,6N*,則數(shù)列{斯}的前n項(xiàng)

和為.

【解析】0n=log2(l?工廠避...Q⑵,

可得a?+i=log2[1?(1-3;1)?a;i?(尤@2)?啊……以2珀?2]=log2c?屑?酒…磅2?)=3a“一L

a-n+i-iy=3(a”--y)?

則{冊(cè)一2}是首項(xiàng)為2—4=''公比為3的等比數(shù)列,

n-1n-1

可得冊(cè)一言二"|~,3,an=-3+,

?2?

3n+1+2n-3

?e?S-:QF=

n4

故答案為:3鵬+,—一3

:題目區(qū)在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的積,形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次“擴(kuò)展”.將,

數(shù)列1,2進(jìn)行“擴(kuò)展”,第一次得到數(shù)列1,2,2;第二次得到數(shù)列1,2,2,4,2;….設(shè)第n次“擴(kuò)展”后所得數(shù)

列為為,力…,并記(?劣力館?)則數(shù)列{廝}的通項(xiàng)公式為.

X.________1__,_____2_,________2__,_____Q__n_=_l_o_g_2__l___1_?_6_2________2___,_______________________,

【解析】On=log2(l?電,力2/m,2),

32

可得an+1=log2[l?(1-的)?X1-(力何2)?電,?…Xm(2xm)-2]=log2(l?酒?澧??…x^-2)=3an-l.

設(shè)%垃+1=3(。九+1),即為an+1=3an+2可得力=—.,

則{斯-1}是首項(xiàng)為2—5,公比為3的等比數(shù)列,

可得冊(cè)一4=等?3”T,即為5=號(hào)工nGN*.

故答案為:an—3.I,nGN*.

跟藤訓(xùn)練」:在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的平均數(shù),形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次

“擴(kuò)展”.將數(shù)列1,2進(jìn)行“擴(kuò)展”,第一次得到數(shù)列14,2;第二次得到數(shù)列1,告弓,弓,2;第八次得到數(shù)列

1,電,電…,2,則第n次得到的數(shù)列項(xiàng)數(shù)為_(kāi)2"+1.

【解析】設(shè)第n次“擴(kuò)展”得到的數(shù)列項(xiàng)數(shù)為bn,

則瓦=3,匕2=5,.,

第九+1次“擴(kuò)展”后得到的數(shù)列可在第九次“擴(kuò)展”后得到的與項(xiàng)數(shù)中任意相鄰的兩項(xiàng)中取其平均數(shù),共增

加了勾―1個(gè)數(shù),

bn+1=2bn-l,:,fen+1-l=2(b?-l),

又???仇一1=3—1=2片0,

數(shù)列{第一1}是首項(xiàng)為2,公比為2的等比數(shù)列,

n

bn-1=2",:.bn=2+1,

由題意可知,每次“擴(kuò)展”后所得到的數(shù)列均為等差數(shù)列,

則%=⑵+?。+2)=3-2“T+方,

Sn=(3*2°+|-)+(3x2]+5)+……+(3x2”一+=3(二;)+萼=3?2"+萼―3,

故答案為:2"+1,3?2"+萼一3.

,跟蹤訓(xùn)練②構(gòu)造數(shù)組,規(guī)則如下:第一組是兩個(gè)1,即(1,1),第二組是(1,2a,1),第三組是(1,O(1+2a),2a,

a(2a+1),1)…,在每一組的相鄰兩個(gè)數(shù)組之間插入這兩個(gè)數(shù)的和的a倍得到下一組,其中aC(0,J),設(shè)

第九組有an個(gè)數(shù),且這冊(cè)個(gè)數(shù)的和為S?(neN*).

⑴求a”和S”;

的-1a2—la?-1n

(2)求證:§+s,+?一+下—>了.

【解析】(1)由題意可知的=2,

當(dāng)n>2時(shí),a”=an-i+(a,n-i-1)=2an-i—1,:.(1n—1=2(an_j—1).

n-1

/.an-l=2~\ai-1)=2j./.an=2"+1.

由數(shù)列的構(gòu)造規(guī)則可知S、=2,Sn=Su+2aSn_i-2a=(2a+1)SOT-2a,

AS?-l=(2a+1)(Ski-1)=(2a+1—-1)=(2a+1尸,

n1

.-.Sn=(2a+l)-+l.

(2)設(shè)bn==(2a+;)"T+i,則圖+i=^a+lY+1'

?3?

?:aE(0,^),l<2a+l<2,A(2a+l)n<2(2a+I)"-1,

/.(2a+l)n+l<2(2a+l)"-1+2,

2n2n2^-1

"(2a+l)"+l>2(2a+l)n-1+2-(2a+l)n-1+1-

即廉是遞增數(shù)列.

bn>fen_j>bn-2>--->b2>br-y.

,,,,,、77,c一Qi-1do—1QJ”-1、ri

bn+bn-i+bn-2-\-----\~b2+仇>-5-,即-Q----1-----Q-----1-----1----Q—>-.

跟蹤訓(xùn)練3j已知數(shù)列{%}的首項(xiàng)為2,前幾項(xiàng)和為Sn,且an+1=2Sn+2.

⑴求數(shù)列{斯}的通項(xiàng)公式;

(2)在“與冊(cè)記之間插入幾個(gè)數(shù),使這九+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列,若數(shù)列{cj滿(mǎn)足c.=

生二%”,求數(shù)列{c.}的前幾項(xiàng)和.

【解析】(1)當(dāng)九>2時(shí),an+1=2Sn+2,a“=2S“_i+2,/.an+1-a?=2a?,an+1=3an,

==n-1

且九=1時(shí),a22ai+2=6,:a23ai也滿(mǎn)足上式,/.a?=2-3;

Q?+]-a^n4?3”T

(2)根據(jù)題意,dn=

n+1n+1

2九一1.4?3“T=/311_

nn+1\n+1n/J

.?.{c“}的前九項(xiàng)和黑=4傳一1+看一…+五汩一*)=4(言]—1).

題型三:數(shù)列規(guī)律問(wèn)題/

’題目q0—1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列aQ…4…滿(mǎn)足a,e{0,l}(i=L2,…),且存

在正整數(shù)小,使得ai+m=a,(i=1,2,…)成立,則稱(chēng)其為0—1周期序列,并稱(chēng)滿(mǎn)足ai+m=a,:(i=1,2…)的最

1_小_

小正整數(shù)m為這個(gè)序列的周期.對(duì)于周期為恒的0—1序列QQ…%…,C(fc)=一網(wǎng),+』k=L2,

"i=i

m-1)是描述其性質(zhì)的重要指標(biāo),下列周期為5的0—1序列中,滿(mǎn)足C(fc)<《國(guó)=1,2,3,4)的序列是

A.11010???B.11011???C.10001???D.11001???

【解析】對(duì)于4選項(xiàng):序列1101011010

5

。⑴—卷〉7?!辍I?=]~(1+0+0+0+0)=《,

o1.=1,oo

I2,3,4),故排除A;

i=l

對(duì)于B選項(xiàng):序列1101111011

5

C⑴==\"(1+0+0+1+1),不滿(mǎn)足條件,排除;

2=1

對(duì)于。選項(xiàng):序列100011000110001

5

c⑴—虧2處。升1=4-(0+0+0+0+1)=看,

i=l

。(2)—~^~>^a0Qz+2--7-(0+0+0+0++0)—0,

i=l

。⑶=-y^a^+3=-^-(0+0+0+0+0)=0,

F51r

,符合條件,

。1=1。

于。選項(xiàng):序列1100111001

?4?

5

。(1)==卷(1+0+0+0+1)=>-p-不滿(mǎn)足條件.

O£=]333

故選:C.

:題目區(qū)已知T,s"為整數(shù),集合4={a|a=2「+2'+*0Wr<S<田中的數(shù)從小到大排列,組成數(shù)列{廝},

女口電=7,0-2=11,0121=()

A.515B.896C.1027D.1792

【解析】當(dāng)±=2時(shí),r只能取0,s只能取1,故符合條件的項(xiàng)有。:=1項(xiàng);

當(dāng)t=3時(shí),/和s從0,1,2中取兩個(gè),故符合條件的項(xiàng)有點(diǎn)=3項(xiàng);

同理,當(dāng)力=4時(shí),符合條件的項(xiàng)有或=6項(xiàng);

以此類(lèi)推可知,因?yàn)榫c+C;+以+…+=120;

的21是當(dāng)t=10時(shí),r,s,t所組成的最小的項(xiàng),即?-=0,S=1;

110

.-.a121=20+2+2=1027;

故選:C.

題目叵蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢

的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以/(n)表示

第九幅圖的蜂巢總數(shù),則/(4)=();/(n)=()

C.373n2-3n+1D.383n2+3n-1

【解析】由圖可得/(2)—/(I)=7-1=6,/(3)—f⑵=19—7=2X6,

則/(4)-/(3)=37-19=3x6,7(5)-/(4)=61-37=4x6,-??

因此,當(dāng)n>2時(shí),有f(n)—f(n—1)=6(n—1),

所以/(n)=[/(n)-f(n-l)]+[/(n-1)-/(n-2)]+-??+[/(2)-/(1)]+/(1)

=6[(n—1)+(n—2)H---1-2+1]+1=3n2—3n+1.

又/⑴=l=3xl2—3x1+1,所以/(n)=3n2—3n+1.

當(dāng)n=4時(shí),/(4)=3x42—3x4+1=37.

故選:C.

跟蹤訓(xùn)練[1]“0,1數(shù)列”在通信技術(shù)中有著重要應(yīng)用,它是指各項(xiàng)的值都等于0或1的數(shù)列.設(shè)A是一個(gè)有限

“0,1數(shù)列",f(A)表示把A中每個(gè)0都變?yōu)?,0,1,每個(gè)1都變?yōu)?,1,0,所得到的新的“0,1數(shù)列”,例如

A={1,0},則/(A)={0,1,0,1,0,1}.設(shè)4是一個(gè)有限“0,1數(shù)列”,定義4+i=/(4),%=1,2,3,….

若有限“0,1數(shù)列"4={0,1,0},則數(shù)列A2022的所有項(xiàng)之和為.

【解析】因?yàn)?={0,1,0},

所以4={1,0,1,0,1,0,1,0,1},

A={0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0),

顯然4中有3項(xiàng),其中2項(xiàng)為0,1項(xiàng)為1,由于每個(gè)0都變?yōu)?,0,1,每個(gè)1都變?yōu)?,1,0,

出中有9項(xiàng),其中4項(xiàng)為0,5項(xiàng)為1,同理可得4中有27項(xiàng),其中14項(xiàng)為0,13項(xiàng)為1,

由此可得A”中有3"項(xiàng),其中0的項(xiàng)數(shù)與1的項(xiàng)數(shù)差的絕對(duì)值是1,

當(dāng)九為奇數(shù)時(shí),0的項(xiàng)數(shù)為偶數(shù),比1的項(xiàng)數(shù)多1項(xiàng);當(dāng)八為偶數(shù)時(shí),0的項(xiàng)數(shù)為奇數(shù),比1的項(xiàng)數(shù)少1項(xiàng);

因此,數(shù)列4o22有32°22項(xiàng),0的項(xiàng)數(shù)比1的項(xiàng)數(shù)少1項(xiàng),

202220222022

所以數(shù)列A2022的所有項(xiàng)之和為-1(3-1)X0+-|-(3+1)X1=-1(3+1).

故答案為:4(32022+1).

?5-

題型四:絕對(duì)值數(shù)列問(wèn)題/

’題目E普林斯頓大學(xué)的康威教授發(fā)現(xiàn)了一類(lèi)有趣的數(shù)列并命名為“外觀數(shù)列”,該數(shù)列的后一項(xiàng)由前一項(xiàng)的

外觀產(chǎn)生.以1為首項(xiàng)的“外觀數(shù)列”記作4,其中4為1,11,21,1211,111221,…,即第一項(xiàng)為1,外觀上

看是1個(gè)1,因此第二項(xiàng)為11;第二項(xiàng)外觀上看是2個(gè)1,因此第三項(xiàng)為21;第三項(xiàng)外觀上看是1個(gè)2,1個(gè)1,

因此第四項(xiàng)為1211,…,按照相同的規(guī)則可得4其它項(xiàng),例如4為3,13,1113,3113,132113,…若4;的

第九項(xiàng)記作an,Aj的第九項(xiàng)記作b”,其中i,/C[2,9],若品=此一6/,則{品}的前幾項(xiàng)和為()

A.2n|i-j|B.n(i+j)C.n|i-j|D.y|i-j|

【解析】由題意得,ai=i,a2—li,a3=Illi,a4=311i,…,a"=…峰

bi=j,b2=lj,b3=lllj,b4=311j,…,bn=---j-,

由遞推可知,隨著71的增大,斯和屋每一項(xiàng)除了最后一位不同外,其余各位數(shù)都相同,

所以品=\an-br\=|i—H,所以{c?}的前幾項(xiàng)和為3i-/|,

故選:C.

‘彈也侈選題)對(duì)于數(shù)列{冊(cè)},若存在正整數(shù)可上二2),使得切>四_「網(wǎng)>%i,則稱(chēng)內(nèi)是數(shù)列{aj的“峰

值”,k是數(shù)列5}的“峰值點(diǎn)在數(shù)列{漏中,若冊(cè)=q,下面哪些數(shù)不能作為數(shù)列{冊(cè)}的“峰值

點(diǎn)”?()

A.1B.3C.6D.12

=ja

因?yàn)樗?,+旦一9|,所以ai=0,a2=3,a3^-,?4=3,a5=^-,a6=-1-7=

ITLIJ0O(

an=普,o12=用,。13=瞿,只有。3>。2,。3>。4,所以"3"是"峰值點(diǎn)”,其它選項(xiàng)不是.

-L-LO1O

、故選:4CD.

’題目區(qū)侈選題)對(duì)于數(shù)列{冊(cè)},若存在正整數(shù)秘二2),使得&VQi,&Va/,則稱(chēng)功是數(shù)歹(J{冊(cè)}的“谷

值”,k是數(shù)列{冊(cè)}的“谷值點(diǎn)”,在數(shù)列{冊(cè)}中,若冊(cè)=卜+,—,則數(shù)列{冊(cè)}的“谷值點(diǎn)”為()

A.2B.3C.5D.7

【解析】<=卜+.—81,

???Q1—-9N,電_一A彳,_9N—4,恁_一百6_,a6_~~x29_—2彳,

Q

當(dāng)九>7,7ZCN時(shí),72+:—8>0,

a”=ri+旦一8,此時(shí)數(shù)列單調(diào)遞增,

n

又a2V5,a2<a3,a7<a6,c^Vag,所以數(shù)列{%}的“谷值點(diǎn)”為2,7,

故選:AD.

mH]J已知等差數(shù)列{aj的前?1項(xiàng)和為S”,<13=5,<17=—3.

(1)當(dāng)n為多少時(shí)S”取最大值?

(2)若數(shù)歹(!{4}的每一項(xiàng)都有0=|冊(cè)],求數(shù)列{0}的前n項(xiàng)和Tn.

【解析】(1)設(shè)數(shù)列{%}的公差為d,

由a3=5,&7=-3,知d=4*=—2,所以飆=<13+(九-3)d=11—2n,

令a“>0,則14九45,即數(shù)列{冊(cè)}的前5項(xiàng)均為正數(shù),從第6項(xiàng)開(kāi)始為負(fù)數(shù),

所以當(dāng)n為5時(shí),S”取最大值.

(2)由⑴知,Sn=(3[an)九="a。_喻,.=%=|11—2箱,

當(dāng)時(shí),Tn—Sn—n(10—n)——Th+lOn;

,2

當(dāng)九>6時(shí),7;=S5-(Sn-S5)=2S5-Sn=50-n(10-n)=n-10n+50,

,6?

—TL+10n,7245

綜上,黑=

n2—10n+50,九>6

題型五:數(shù)列中存在性、任意性問(wèn)題g

:題目UJ設(shè){冊(cè)}是公差不為0的無(wú)窮等差數(shù)列,則“{冊(cè)}為遞增數(shù)列”是“存在正整數(shù)No,當(dāng)九〉No時(shí),冊(cè)>0”

的()

,A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件

【解析】因?yàn)閿?shù)列{冊(cè)}是公差不為0的無(wú)窮等差數(shù)列,當(dāng){an}為遞增數(shù)列時(shí),公差d>0,

令0n=電+(n—l)d>0,解得?i>1一號(hào),[1—詈]表示取整函數(shù),

所以存在正整數(shù)N)=l+[1—詈],當(dāng)九>凡時(shí),冊(cè)>0,充分性成立;

當(dāng)n>N)時(shí),a?>0,a”T<0,則d=a“一0,必要性成立;

是充分必要條件.

故選:C.

’題目區(qū)對(duì)于數(shù)列{冊(cè)},定義4=的+2a2+…+2-%為數(shù)列{斯}的“加權(quán)和”,已知某數(shù)列{%}的“加權(quán)和”

4="?2"+i,記數(shù)列{an+9}的前幾項(xiàng)和為7;,若黑W£對(duì)任意的九eN*恒成立,則實(shí)數(shù)p的取值范圍為

()

,A.[-卷,-[]B.[—?一]]C.■,—第D.[—孚號(hào)]____________

n1n+1

【解析】由題意可得:Qi+202H-----H2"2a九t+2an=n,2,

/.n2時(shí),?+2a2+…+2n2aj1=(n-1),2n,

n-1

相減可得:2an=n-2"i—(九一1)?2'化為:Q九=2九+2,

n=l時(shí),QI=2?=4,滿(mǎn)足上式,

an=2n+2,GN*.

.F=a1+a2+…+a“+p(l+2+…+九)=皿等±^+2?嗎匚1="(九+3)+「?嗎也,

???9對(duì)任意的…*恒成立,人益,即3:黑梵樵,解彳T*。

故選:A.

’題目區(qū)定義:首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“小一數(shù)列”.已知數(shù)列{&}是首項(xiàng)和公差均為1的等差

數(shù)列.設(shè)館為正整數(shù),若存在-數(shù)列”{勾},對(duì)任意的正整數(shù)%,當(dāng)%Wm時(shí),都有與W念Wbk+1成立,則

m的最大值為

-1

【解析】由題意知,bn=g",a?=1+(n—1)=n,

k,mEN+,k^m,q—WkW/恒成立,

當(dāng)A;=l時(shí),1=/Twiwq,

當(dāng)%=2時(shí),q<2<q2,即血<q&2,

當(dāng)k>3時(shí),兩邊取對(duì)數(shù),可得舉<1114<41咚對(duì)后《小有解,

即[嚕]《皿式理與],

Lk」maxLk一1Jmin

令/Q)=畢3>3),則f'(⑼=上粵,

xX

當(dāng)①>3時(shí),[Q)=i—產(chǎn)<o,此時(shí),/Q)單調(diào)遞減,

所以當(dāng)%>3時(shí),1里]=粵,

LK」maxO

31---Ino;

令gQ)=T爸3>),則9'3)=(3)23)3),

-7?

令(p[x)—1—--lnx(x>3),則(pf(力)=——j(%>3),

1---1---I1nx

x

當(dāng)力>3時(shí),“(力)=-鏟V0,即g'(劣)=<0,

Lx(f2

所以g(rc)在[3,+oo)上單調(diào)遞減,

即當(dāng)k>3時(shí)』J嗎]Innz貝”ln3<]nm

L用一1」minzn—l'、3m—1

化簡(jiǎn),得31nm—(m—l)ln3>0,

令h(m)—31nm—(m—l)ln3,則hf(m)=2—ln3,

由k>3,得?ri>3,則九'(m)=*—ln3<0,

所以無(wú)(力)在[3,+oo)上單調(diào)遞減,

又因?yàn)榫泞啥?1n5-(5-l)ln3=lnl25-ln81>0,

無(wú)⑹=31n6—(6—l)ln3=ln216—ln243<0,

所以存在m0E(5,6),使得ftz(m0)=0,

所以整數(shù)小的最大值為5,此時(shí)”[3\5斗(%>3).

故答案為:5.

跟蹤訓(xùn)練1:已知數(shù)列{冊(cè)}的前幾項(xiàng)和為&,為=—1■,且4sl+i=3S“—9.

(1)求數(shù)列{詼}的通項(xiàng);

(2)設(shè)數(shù)列{&?)滿(mǎn)足3bn+(n-4)a?=0(nCN*),記{6?}的前九項(xiàng)和為黑.

①求方;

②若黑WAbn對(duì)任意neN*恒成立,求實(shí)數(shù)A的取值范圍.

Q9797

【解析】當(dāng)九二1時(shí),4(Qi+。2)=3a1—9,4a2=3—9=—“,a2=―記,

當(dāng)n>2時(shí),由4szi+1=35九一9①,得4s八=3Sx—9②,

①一②得4an+1=3an,a2手。,

???4片0,.?.皿=[■,又收=3,

.,.{飆}是首項(xiàng)為一!■,公比為年的等比數(shù)列,-(-|-)=—31;

⑵①由30+(?1-4)冊(cè)=0,得幻=-用:生冊(cè)=(九一4乂1)”,

所以式=-3x菖―2x信1―1x得)3+0x得)4+…+(九—4)?信):

和=-3x信7-2x借丫-1x信)4+…+(n-5)-4)”+(九—4)?信)”,

兩式相減得》;=—3x1+(打+借丫+借)4+…借)”—(九―4).信)2

=-葛+—(J,-(n-4)(j)n+1=-f+f-4借)…一(九—4).(f)n+1=-n-借)

1-丁

所以黑=-4段信)"+i

②由T?&機(jī),得—4n-</l(n—4)-(菖)"恒成立,

即A(n—4)+34>0恒成立,

當(dāng)n二4時(shí),不等式恒成立;

當(dāng)九<4時(shí),有--缶=-3-得后1;

當(dāng)Q4時(shí),有心-9=-3-碧,得心-3;

綜上,實(shí)數(shù)4的取值范圍為[-3,1].

?8?

[跟蹤訓(xùn)練2已知數(shù)列{a?}中,的=1,&2=2,且冊(cè)+2=2an+l+3M,設(shè)數(shù)列bn—an+1+an.

(1)求證:數(shù)列{b,J是等比數(shù)列,并求數(shù)列{b,J的通項(xiàng)公式;

JI1

⑵若數(shù)列{0}的前n項(xiàng)和為又,數(shù)列的前九項(xiàng)和為北,求證:北<%

、D九D九十14

==

【解析】證明:⑴Q九+22%+1+3a九,/.。打+2+。九+13azi+i+3a燈,

又勾=an+1+an.:.bn+1=30,仇=Qi+。2=1+2=3,

?,?數(shù)列{bj是等比數(shù)列,首項(xiàng)為3,公比為3,?,.勾=3n.

⑵數(shù)列{b}的前幾項(xiàng)和為S“=3(;1)=3(3;1).

n、

_9_,

=_3"=X(________1___]

nn+1n+1

Sn-Sn+1~(3-l)(3-l)――3-l''

/.數(shù)列]Q:Q—1的前71項(xiàng)和為

(*^n*^n+lj

+5_+……+j_.1)=XM_11vJ_

“2K3-132-132-l33-l3n-l3"+i-i)2V23n+1_]/4'

黑V

題型六:奇偶性問(wèn)題

(題目|1]已知數(shù)歹U{aj滿(mǎn)足斯+1+(—1)%九=2n—L若01=1,貝!。3=,前60項(xiàng)和為?:

n

【解析】數(shù)歹U{&}滿(mǎn)足Qn+i+(―l)an=2幾一1,Qi=1,。2—1=1,解得02=2.

0,3+2=3,解得a3=1.

o-n+i+(一1)%九=2n—1,

0>2—Qi—1,Q3+。2=3,。4―。3=5,0-5+。4=7,Q>Q―0-5=9,。7+。6=11,,…。50-。49=97.

從而可得。3+Q1=2,。4+。2=8,。7+。5=2,。8+。6=24,。9+Q11=2,。12+。10=40,。13+=2,。16+。14

=56,…

從第一項(xiàng)開(kāi)始,依次取2個(gè)相鄰奇數(shù)項(xiàng)的和都等于2,從第二項(xiàng)開(kāi)始,依次取2個(gè)相鄰偶數(shù)項(xiàng)的和構(gòu)成以8

為首項(xiàng),以16為公差的等差數(shù)列.

{冊(cè)}的前60項(xiàng)和為15x2+(15X8+有尸x16)=i83o,

故答案為:1,1830.

〔題目0已知數(shù)列{冊(cè)}的前n項(xiàng)和S“滿(mǎn)足S”—S“-2=3x(—~(71>3),且S1=1,$2=—"!",求數(shù)列{。九}

、_的通項(xiàng)公式._y

【解析】先考慮偶數(shù)項(xiàng),有:S2“一522=3X(―,廣=_3X仁產(chǎn),

$2九-2-S2n_4=—3X(—),…,$4-$2=—3X

2nX2n

:.S2n=S2-3[^+(y)口+…2+4廣;

同理考慮奇數(shù)項(xiàng)有52n+1=3x(:廣風(fēng)-1=3x[廣,…,$3—8=3X,

產(chǎn)g+3G7+(9廠+…+(打]=2—6廣.n>l,

;?電九+1=S2九+1—S2Tl=4—3x(5),?1>1,出九二$2九一$2所1=-4+3x(Q-i—Si—1,

4—3x(4)"1,九是奇數(shù)

—4+3X(十),72為偶數(shù)

「題目區(qū)已知數(shù)列{Q/的前幾項(xiàng)和Sn滿(mǎn)足Sn=20九+(-1)Jn>1.

?9?

(1)寫(xiě)出數(shù)列{%}的前三項(xiàng)的,。2,。3;

⑵試判斷數(shù)列{an+是否為等比數(shù)列,如果是,求出{冊(cè)+的通項(xiàng)公式;如果不是,請(qǐng)說(shuō)明

理由;

⑶證明:對(duì)任意的整數(shù)加>4,有工+工+…+工<].

04a1nO

【解析】⑴當(dāng)九=1時(shí),有:Si=Qi=2。1+(-1)n&=1;

當(dāng)71=2時(shí),有:S2=+。2=2a2+(—1)20電=0;

當(dāng)n=3時(shí),有:S3=Q1+。2+03=2。3+(—1)3=>。3=2;

綜上可知Ql=l,&=0,。3=2;

⑵{%+y(-ir)是等比數(shù)列,理由如下:

nn-1

由已知得:an=Sn—Sn-i=2Q九+(—l)—2^-i—(—l)

化簡(jiǎn)得:=2每t+2(-l)n-1

上式可化為:Q九+~|~?(-1)"=2&_1+看,(—1廣]

故數(shù)列{冊(cè)+*D"}是以5+年?(-1)1=]■為首項(xiàng),公比為2的等比數(shù)列.

⑶由⑵可知:%=等[21一(一1廠),

所以_|1__—-2_—±111-----------------------------

叼人十&5十十*2l22-l23+12m-2-(-l)m

—21.3+9+15+33+63++2m-2-(-l)mJ

=9["+;+《+擊+…]<}("+;+%+擊+…)

13X(1尸J13=1041105=7

UF,團(tuán)15-120120-T'

跟蹤訓(xùn)練1J已知{an}為等差數(shù)列,{鼠}為等比數(shù)列,出=瓦=1,口5=5(a《一&3),氏=4為一的.

⑴求{冊(cè)}和也J的通項(xiàng)公式;

—;—,九為奇數(shù),

(2)對(duì)任意的正整數(shù)設(shè)c"=:"+2求數(shù)列{品}的前2九項(xiàng)和.

善紅,九為偶數(shù).

°n+l

【解析】⑴由題意,設(shè)等差數(shù)列{冊(cè)}的公差為d,

貝Iai~a3—d,a,5=1+4d,

:a$=5(a4—CI3),1+4d=5d,解得d=1,

an=1+1,(n—1)=n,nEN*,

3l

設(shè)等比數(shù)列{bn}的公比為q,則b3=q,b4=Q,b5=q,

---65=4(64-63),.?./=4(/—q2),化簡(jiǎn)整理,得g2—4勺+4=0,解得9=2,

n1n1

/.bn^l-2~^2-,nEN*.

,九為奇數(shù),‘萩%為奇數(shù)___-),n為奇數(shù)

Q九Q71+221n九+2

(2)由(1),可得品=,

廝+i力為偶數(shù).畤L,n為偶數(shù)嘮工"為偶數(shù)

°hn+l,/"

設(shè)數(shù)列{cn}的前幾項(xiàng)和為1,

幻。

貝Un=Ci+C2+3+c4H------Fc2n-i+c2n

?10.

=氏(1—+)+*借T)+…+9,(27T=T—1^1)]+借+卷+…+^1)

1,11,,11\,<3,5,,2n+l\

=T^1-y+y-J+",+2^T_2^+rH^+^+-+^^;

+小卷+…n,(3?5?|2九+11

而不r+(下+了+…

令人八峪〃=/3+,5夏,+…+.了2n+「l,

,2n+l

則看跖=卷+*+-“+等9十22九+2'

兩式相減,

3,._3,2,2,,22n+l_今+2?(卷+/+…+表)-深生

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論