上海黃浦區(qū)2023-2024學年高一下數(shù)學期末復習檢測試題含解析_第1頁
上海黃浦區(qū)2023-2024學年高一下數(shù)學期末復習檢測試題含解析_第2頁
上海黃浦區(qū)2023-2024學年高一下數(shù)學期末復習檢測試題含解析_第3頁
上海黃浦區(qū)2023-2024學年高一下數(shù)學期末復習檢測試題含解析_第4頁
上海黃浦區(qū)2023-2024學年高一下數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海黃浦區(qū)2023-2024學年高一下數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若點在圓外,則a的取值范圍是()A. B. C. D.或2.已知為兩條不同的直線,為兩個不同的平面,給出下列命題:①若,,則;②若,,則;③若,,則;④若,,,則.其中正確的命題是()A.②③ B.①③ C.②④ D.①④3.已知且為常數(shù),圓,過圓內(nèi)一點的直線與圓相交于兩點,當弦最短時,直線的方程為,則的值為()A.2 B.3 C.4 D.54.在平面直角坐標系xOy中,直線的傾斜角為()A. B. C. D.5.將函數(shù)的圖象上各點沿軸向右平移個單位長度,所得函數(shù)圖象的一個對稱中心為()A. B. C. D.6.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則的值等于()A.1 B.5 C.9 D.47.若滿足,且的最小值為,則實數(shù)的值為()A. B. C. D.8.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶9.已知與之間的一組數(shù)據(jù)如表,若與的線性回歸方程為,則的值為A.1 B.2 C.3 D.410.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.19二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在圓心角為,半徑為2的扇形AOB中任取一點P,則的概率為________.12.利用直線與圓的有關知識求函數(shù)的最小值為_______.13.函數(shù)的最小正周期是________14.求值:_____.15.已知,,則______.16.已知等比數(shù)列的前項和為,,則的值是__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.從半徑為1的半圓出發(fā),以此向內(nèi)、向外連續(xù)作半圓,且后一個半圓的直徑為前一個半圓的半徑,如此下去,可得到無數(shù)個半圓.(1)求出所有這些半圓圍城的封閉圖形的周長;(2)求出所有這些半圓圍城的封閉圖形的面積.18.已知等差數(shù)列滿足,,其前項和為.(1)求的通項公式及;(2)令,求數(shù)列的前項和,并求的值.19.已知圓A:,圓B:.(Ⅰ)求經(jīng)過圓A與圓B的圓心的直線方程;(Ⅱ)已知直線l:,設圓心A關于直線l的對稱點為,點C在直線l上,當?shù)拿娣e為14時,求點C的坐標.20.某校從高一年級學生中隨機抽取60名學生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.(1)根據(jù)頻率分布直方圖,估計眾數(shù)和中位數(shù);(2)用分層抽樣的方法從的學生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,求這兩人的分數(shù)至少一人落在的概率.21.共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務區(qū)等場所提供的自行車單車共享服務,由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了50人就該城市共享單車的推行情況進行問卷調(diào)査,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照分成5組,請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:頻率分布表組別分組頻數(shù)頻率第1組80.16第2組▆第3組200.40第4組▆0.08第5組2合計▆▆(1)求的值;(2)若在滿意度評分值為的人中隨機抽取2人進行座談,求所抽取的2人中至少一人來自第5組的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

先由表示圓可得,然后將點代入不等式即可解得答案【詳解】由表示圓可得,即因為點在圓外所以,即綜上:a的取值范圍是故選:C【點睛】點與圓的位置關系(1)在圓外(2)在圓上(3)在圓內(nèi)2、B【解析】

利用空間中線面平行、線面垂直、面面平行、面面垂直的判定與性質(zhì)即可作答.【詳解】垂直于同一條直線的兩個平面互相平行,故①對;平行于同一條直線的兩個平面相交或平行,故②錯;若,,,則或與為異面直線或與為相交直線,故④錯;若,則存在過直線的平面,平面交平面于直線,,又因為,所以,又因為平面,所以,故③對.故選B.【點睛】本題主要考查空間中,直線與平面平行或垂直的判定與性質(zhì),以及平面與平面平行或垂直的判定與性質(zhì),屬于基礎題型.3、B【解析】

由圓的方程求出圓心坐標與半徑,結合題意,可得過圓心與點(1,2)的直線與直線2x﹣y=0垂直,再由斜率的關系列式求解.【詳解】圓C:化簡為圓心坐標為,半徑為.如圖,由題意可得,當弦最短時,過圓心與點(1,2)的直線與直線垂直.則,即a=1.故選:B.【點睛】本題考查直線與圓位置關系的應用,考查數(shù)形結合的解題思想方法與數(shù)學轉化思想方法,是中檔題.一般直線和圓的題很多情況下是利用數(shù)形結合來解決的,聯(lián)立的時候較少;在求圓上的點到直線或者定點的距離時,一般是轉化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;涉及到圓的弦長或者切線長時,經(jīng)常用到垂徑定理.4、B【解析】

設直線的傾斜角為,,,可得,解得.【詳解】設直線的傾斜角為,,.,解得.故選:B.【點睛】本題考查直線的傾斜角與斜率之間的關系、三角函數(shù)求值,考查推理能力與計算能力,屬于基礎題.5、A【解析】

先求得圖象變換后的解析式,再根據(jù)正弦函數(shù)對稱中心,求出正確選項.【詳解】向右平移的單位長度,得到,由解得,當時,對稱中心為,故選A.【點睛】本小題主要考查三角函數(shù)圖象變換,考查三角函數(shù)對稱中心的求法,屬于基礎題.6、C【解析】試題分析:由韋達定理得,,則,當適當排序后成等比數(shù)列時,必為等比中項,故,.當適當排序后成等差數(shù)列時,必不是等差中項,當是等差中項時,,解得,;當是等差中項時,,解得,,綜上所述,,所以.考點:等差中項和等比中項.7、B【解析】

首先畫出滿足條件的平面區(qū)域,然后根據(jù)目標函數(shù)取最小值找出最優(yōu)解,把最優(yōu)解點代入目標函數(shù)即可求出的值.【詳解】畫出滿足條件的平面區(qū)域,如圖所示:,由,解得:,由得:,顯然直線過時,z最小,∴,解得:,故選B.【點睛】本題主要考查簡單的線性規(guī)劃,已知目標函數(shù)最值求參數(shù)的問題,屬于??碱}型.8、A【解析】

利用對立事件、互斥事件的定義直接求解.【詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【點睛】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.9、D【解析】

先求出樣本中心點,代入回歸直線方程,即可求得的值,得到答案.【詳解】由題意,根據(jù)表中的數(shù)據(jù),可得,又由回歸直線方程過樣本中心點,所以,解得,故選D.【點睛】本題主要考查了線性回歸直線方程的應用,其中解答中熟記線性回歸直線方程的基本特征是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、C【解析】

先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于常考題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意,建立坐標系,求出圓心角扇形區(qū)域的面積,進而設,由數(shù)量積的計算公式可得滿足的區(qū)域,求出其面積,代入幾何概率的計算公式即可求解.【詳解】根據(jù)題意,建立如圖的坐標系,則則扇形的面積為設若,則有,即;則滿足的區(qū)域為如圖的陰影區(qū)域,直線與弧的交點為,易得的坐標為,則陰影區(qū)域的面積為故的概率故答案為:【點睛】本題考查幾何概型,涉及數(shù)量積的計算,屬于綜合題.12、【解析】

令得,轉化為z==,再利用圓心到直線距離求最值即可【詳解】令,則故轉化為z==,表示上半個圓上的點到直線的距離的最小值的5倍,即故答案為3【點睛】本題考查直線與圓的位置關系,點到直線的距離公式,考查數(shù)形結合思想,是中檔題13、【解析】

先利用二倍角余弦公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎的知識的應用.14、【解析】

根據(jù)同角三角函數(shù)的基本關系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,同角角三角函數(shù)基本關系主要有:,.屬于基礎題。15、【解析】

直接利用二倍角公式,即可得到本題答案.【詳解】因為,所以,得,由,所以.故答案為:【點睛】本題主要考查利用二倍角公式求值,屬基礎題.16、1【解析】

根據(jù)等比數(shù)列前項和公式,由可得,通過化簡可得,代入的值即可得結果.【詳解】∵,∴,顯然,∴,∴,∴,∴,故答案為1.【點睛】本題主要考查等比數(shù)列的前項和公式,本題解題的關鍵是看出數(shù)列的公比的值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由第n個半圓的周長得,再利用無窮等比數(shù)列求和即可(2)由第n個半圓的面積得,再利用無窮等比數(shù)列求和即可【詳解】(1)由題意知,圓的半徑滿足數(shù)列,設第n個半圓的周長為,所以,則所有這些半圓圍成的封閉圖形的周長.(2)題意知,設第n個半圓的面積為,則,所以所有這些半圓圍成的封閉圖形的面積將為.【點睛】本題考查無窮等比數(shù)列的和,注意圓的半徑為等比數(shù)列,是周長及面積的考查,是基礎題18、(1),;(2),【解析】

(1)利用等差數(shù)列的通項公式及前n項的和公式可得答案;(2)利用“裂項求和”法可得答案.【詳解】解:(1)設等差數(shù)列的公差為,由,得,又,解得.所以.所以.(2)由,得.設的前項和為,則.【點睛】本題主要考查等差數(shù)列的通項公式及前n項的和,及數(shù)列求和的“裂項相消法”,屬于中檔題.19、(I)(Ⅱ)或【解析】

(Ⅰ)由已知求得,的坐標,再由直線方程的兩點式得答案;(Ⅱ)求出的坐標,再求出以及所在直線方程,設,利用點到直線的距離公式求出到所在直線的距離,代入三角形面積公式解得值,進而可得的坐標.【詳解】(Ⅰ)將圓:化為:,所以,圓:化為:,所以,所以經(jīng)過圓與圓的圓心的直線方程為:,即.(Ⅱ)如圖,設,由題意可得,解得,即,∴,所在直線方程為,即,設,則到所在直線的距離,由,解得或,∴點的坐標為或.【點睛】本題考查直線與圓位置關系的應用,考查點關于直線的對稱點的求法,考查運算求解能力,屬于中檔題.20、(1)眾數(shù)為75,中位數(shù)為73.33;(2).【解析】

(1)由頻率分布直方圖能求出a=0.1.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,基本事件總數(shù),這兩人的分數(shù)至少一人落在[50,60)包含的基本事件個數(shù),由此能求出這兩人的分數(shù)至少一人落在[50,60)的概率.【詳解】(1)由頻率分布直方圖得:,

解得,

所以眾數(shù)為:,的頻率為,

的頻率為,

中位數(shù)為:.(2)用分層抽樣的方法從的學生中抽取一個容量為5的樣本,

的頻率為0.1,的頻率為0.15,

中抽到人,中抽取人,從這五人中任選兩人參加補考,

基本事件總數(shù),這兩人的分數(shù)至少一人落在包含的基本事件個數(shù),所以這兩人的分數(shù)至少一人落在的概率.【點睛】在求解有關古典概型概率的問題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率21、(1);(2).【解析】

(1)根據(jù)頻率分布表可得b.先求得內(nèi)的頻數(shù),即可由總數(shù)減去其余部分求得.結合頻率分布直方圖,即可求得的值.(2)根據(jù)頻率分布表可知在內(nèi)有4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論