版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆河南省安陽市林州市林州一中數(shù)學(xué)高一下期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如果數(shù)據(jù)的平均數(shù)為,方差為,則的平均數(shù)和方差分別為()A. B. C. D.2.在中,,,,則的面積是()A. B. C.或 D.或3.函數(shù),是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)4.若圓錐的高擴(kuò)大為原來的3倍,底面半徑縮短為原來的12A.縮小為原來的34 B.縮小為原來的C.?dāng)U大為原來的2倍 D.不變5.在數(shù)列中,若,,則()A. B. C. D.6.已知三棱錐中,,,則三棱錐的外接球的表面積為()A. B.4 C. D.7.若向量與向量不相等,則與一定()A.不共線 B.長度不相等 C.不都是單位向量 D.不都是零向量8.函數(shù)()的部分圖象如圖所示,其中是圖象的最高點(diǎn),是圖象與軸的交點(diǎn),則()A. B. C. D.9.已知、為銳角,,,則()A. B. C. D.10.在三棱錐中,,,,平面平面,則三棱錐外接球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若向量,,且,則實(shí)數(shù)______.12.若函數(shù)是奇函數(shù),其中,則__________.13.用數(shù)學(xué)歸納法證明不等式“(且)”的過程中,第一步:當(dāng)時(shí),不等式左邊應(yīng)等于__________。14.已知向量,則________15.若數(shù)列滿足,,則的最小值為__________________.16.若數(shù)列是正項(xiàng)數(shù)列,且,則_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖所示,是邊長為的正三角形,點(diǎn)四等分線段.(Ⅰ)求的值;(Ⅱ)若點(diǎn)是線段上一點(diǎn),且,求實(shí)數(shù)的值.18.如圖,已知點(diǎn)和點(diǎn),,且,其中為坐標(biāo)原點(diǎn).(1)若,設(shè)點(diǎn)為線段上的動(dòng)點(diǎn),求的最小值;(2)若,向量,,求的最小值及對應(yīng)的的值.19.設(shè)函數(shù),其中向量,.(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;(2)在中,、、分別是角、、的對邊,已知,,的面積為,求外接圓半徑.20.在中,內(nèi)角的對邊分別為,已知.(1)證明:;(2)若,求邊上的高.21.已知點(diǎn),圓.(1)求過點(diǎn)的圓的切線方程;(2)若直線與圓相交于、兩點(diǎn),且弦的長為,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)平均數(shù)和方差的公式,可推導(dǎo)出,,,的平均數(shù)和方差.【詳解】因?yàn)?,所以,所以的平均?shù)為;因?yàn)?,所以,故選:D.【點(diǎn)睛】本題考查平均數(shù)與方差的公式計(jì)算,考查對概念的理解與應(yīng)用,考查基本運(yùn)算求解能力.2、C【解析】
先根據(jù)正弦定理求出角,從而求出角,再根據(jù)三角形的面積公式進(jìn)行求解即可.【詳解】解:由,,,根據(jù)正弦定理得:,為三角形的內(nèi)角,或,或在中,由,,或則面積或.故選C.【點(diǎn)睛】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.3、A【解析】
判斷函數(shù)函數(shù),的奇偶性,求出其周期即可得到結(jié)論.【詳解】設(shè)則故函數(shù)函數(shù),是奇函數(shù),由故函數(shù),是最小正周期為的奇函數(shù).故選A.【點(diǎn)睛】本題考查正弦函數(shù)的奇偶性和周期性,屬基礎(chǔ)題.4、A【解析】
設(shè)原來的圓錐底面半徑為r,高為h,可得出變化后的圓錐的底面半徑為12r,高為【詳解】設(shè)原來的圓錐底面半徑為r,高為h,該圓錐的體積為V=1變化后的圓錐底面半徑為12r,高為該圓錐的體積為V'=1故選:A.【點(diǎn)睛】本題考查圓錐體積的計(jì)算,考查變化后的圓錐體積的變化,解題關(guān)鍵就是圓錐體積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.5、C【解析】
利用倒數(shù)法構(gòu)造等差數(shù)列,求解通項(xiàng)公式后即可求解某一項(xiàng)的值.【詳解】∵,∴,即,數(shù)列是首項(xiàng)為,公差為2的等差數(shù)列,∴,即,∴.故選C.【點(diǎn)睛】對于形如,可將其轉(zhuǎn)化為的等差數(shù)列形式,然后根據(jù)等差數(shù)列去計(jì)算.6、B【解析】
依據(jù)題中數(shù)據(jù),利用勾股定理可判斷出從而可得三棱錐各面都為直角三角形,進(jìn)而可知外接圓的直徑,即可求出三棱錐的外接球的表面積【詳解】如圖,因?yàn)?又,,從而可得三棱錐各面都為直角三角形,CD是三棱錐的外接球的直徑,在中,,,即,,故選B.【點(diǎn)睛】本題主要考查學(xué)生空間想象以及數(shù)學(xué)建模能力,能夠依據(jù)條件建立合適的模型是解題的關(guān)鍵.7、D【解析】
由方向相同且模相等的向量為相等向量,再逐一判斷即可得解.【詳解】解:向量與向量不相等,它們有可能共線、有可能長度相等、有可能都是單位向量但方向不相同,但不能都是零向量,即選項(xiàng)A、B、C錯(cuò)誤,D正確.故選:D.【點(diǎn)睛】本題考查了相等向量的定義,屬基礎(chǔ)題.8、D【解析】函數(shù)的周期為,四分之一周期為,而函數(shù)的最大值為,故,由余弦定理得,故.9、B【解析】
利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用兩角差的正切公式可求得的值.【詳解】因?yàn)?,且為銳角,則,所以,因?yàn)?,所以故選:B.【點(diǎn)睛】本題考查利用兩角差的正切公式求值,解答的關(guān)鍵就是弄清角與角之間的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.10、D【解析】
結(jié)合題意,結(jié)合直線與平面垂直的判定和性質(zhì),得到兩個(gè)直角三角形,取斜邊的一半,即為外接球的半徑,結(jié)合球表面積計(jì)算公式,計(jì)算,即可.【詳解】過P點(diǎn)作,結(jié)合平面ABC平面PAC可知,,故,結(jié)合可知,,所以,結(jié)合所以,所以,故該外接球的半徑等于,所以球的表面積為,故選D.【點(diǎn)睛】考查了平面與平面垂直的性質(zhì),考查了直線與平面垂直的判定和性質(zhì),難度偏難.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù),兩個(gè)向量平行的條件是建立等式,解之即可.【詳解】解:因?yàn)椋宜越獾霉蚀鸢笧椋骸军c(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的平行的充要條件,屬于基礎(chǔ)題.12、【解析】
定義域上的奇函數(shù),則【詳解】函數(shù)是奇函數(shù),所以,又,則所以填【點(diǎn)睛】定義域上的奇函數(shù),我們可以直接搭建方程,若定義域中則不能直接代指.13、【解析】
用數(shù)學(xué)歸納法證明不等式(且),第一步,即時(shí),分母從3到6,列出式子,得到答案.【詳解】用數(shù)學(xué)歸納法證明不等式(且),第一步,時(shí),左邊式子中每項(xiàng)的分母從3開始增大至6,所以應(yīng)是.即為答案.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的基本步驟,屬于簡單題.14、2【解析】
由向量的模長公式,計(jì)算得到答案.【詳解】因?yàn)橄蛄?,所以,所以答案?【點(diǎn)睛】本題考查向量的模長公式,屬于簡單題.15、【解析】
由題又,故考慮用累加法求通項(xiàng)公式,再分析的最小值.【詳解】,故,當(dāng)且僅當(dāng)時(shí)成立.又為正整數(shù),且,故考查當(dāng)時(shí).當(dāng)時(shí),當(dāng)時(shí),因?yàn)?故當(dāng)時(shí),取最小值為.故答案為:.【點(diǎn)睛】本題主要考查累加法,求最小值時(shí)先用基本不等式,發(fā)現(xiàn)不滿足“三相等”,故考慮與相等時(shí)的取值最近的兩個(gè)正整數(shù).16、【解析】
有已知條件可得出,時(shí),與題中的遞推關(guān)系式相減即可得出,且當(dāng)時(shí)也成立?!驹斀狻繑?shù)列是正項(xiàng)數(shù)列,且所以,即時(shí)兩式相減得,所以()當(dāng)時(shí),適合上式,所以【點(diǎn)睛】本題考差有遞推關(guān)系式求數(shù)列的通項(xiàng)公式,屬于一般題。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)以作為基底,表示出,然后利用數(shù)量積的運(yùn)算法則計(jì)算即可求出;(Ⅱ)由平面向量數(shù)量積的運(yùn)算及其運(yùn)算可得:設(shè),又,所以,解得,得解.【詳解】(Ⅰ)由題意得,則(Ⅱ)因?yàn)辄c(diǎn)Q是線段上一點(diǎn),所以設(shè),又,所以,故,解得,因此所求實(shí)數(shù)m的值為.【點(diǎn)睛】本題主要考查了平面向量的線性運(yùn)算以及數(shù)量積的運(yùn)算以及平面向量基本定理的應(yīng)用,屬于中檔題.18、(1);(2),或.【解析】
(1)設(shè),求出,把表示成關(guān)于的二次函數(shù);(2)利用向量的坐標(biāo)運(yùn)算得,令把表示成關(guān)于的二次函數(shù),再求最小值.【詳解】(1)設(shè),又,所以,,所以當(dāng)時(shí),取得最小值.(2)由題意得,,,則=,令,因?yàn)?,所以,又,所以,,所以?dāng)時(shí),取得最小值,即,解得或,所以當(dāng)或時(shí),取得最小值.【點(diǎn)睛】本題考查利用向量的坐標(biāo)運(yùn)算求向量的模和數(shù)量積,在求解過程中用到知一求二的思想方法,即已知三個(gè)中的一個(gè),另外兩個(gè)均可求出.19、(1),的單調(diào)遞減區(qū)間是;(2).【解析】試題分析:(1)用坐標(biāo)表示向量條件,代入函數(shù)解析式中,運(yùn)用向量的坐標(biāo)運(yùn)算法則求出函數(shù)解析式并應(yīng)用二倍角公式以及兩角和的正弦公式化簡函數(shù)解析式,由三角函數(shù)的性質(zhì)可求函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)將條件代入函數(shù)解析式可求出角,由三角形面積公式求出邊,再由余弦定理求出邊,再由正弦定理可求外接圓半徑.試題解析:(1)由題意得:.所以,函數(shù)的最小正周期為,由得函數(shù)的單調(diào)遞減區(qū)間是(2),解得,又的面積為.得.再由余弦定理,解得,即△為直角三角形.考點(diǎn):1.向量坐標(biāo)運(yùn)算;2.三角函數(shù)圖象與性質(zhì);3.正弦定理與余弦定理.20、(1)見解析(2)【解析】分析:(1)由,結(jié)合正弦定理可得,即;(2)由,結(jié)合余弦定理可得,從而可求得邊上的高.詳解:(1)證明:因?yàn)?,所以,所以,?(2)解:因?yàn)椋?又,所以,解得,所以,所以邊上的高為.點(diǎn)睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關(guān)系,從而達(dá)到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標(biāo)出來,然后確定轉(zhuǎn)化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化.第三步:求結(jié)果.21、(1)或;(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版酒店紅酒供貨合同
- 2025年度新能源汽車充電樁運(yùn)營管理合同重點(diǎn)條款探討3篇
- 2024政府機(jī)關(guān)綠化工程采購合同范本二零二四2篇
- 二零二五版合同能源服務(wù)與節(jié)能產(chǎn)品推廣協(xié)議模板3篇
- 2025年度智能場館場地租賃合同范本3篇
- 2024自建房施工合同包工包料合同
- 二零二四年度35kv架空線路施工工程設(shè)計(jì)與施工協(xié)調(diào)合同
- 2025年度金融機(jī)構(gòu)外匯借款合同模板12篇
- 勞動(dòng)合同編號:XX-2025年度-001
- 2025年智能燃?xì)獗硗茝V與應(yīng)用居民供氣合同3篇
- 2023年湖北省武漢市高考數(shù)學(xué)一模試卷及答案解析
- 城市軌道交通的網(wǎng)絡(luò)安全與數(shù)據(jù)保護(hù)
- 英國足球文化課件
- 《行政職業(yè)能力測驗(yàn)》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團(tuán)可克達(dá)拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點(diǎn)
- 燙傷的安全知識講座
- 工程變更、工程量簽證、結(jié)算以及零星項(xiàng)目預(yù)算程序?qū)嵤┘?xì)則(試行)
- 練習(xí)20連加連減
- 五四制青島版數(shù)學(xué)五年級上冊期末測試題及答案(共3套)
- 員工內(nèi)部崗位調(diào)換申請表
- 商法題庫(含答案)
評論
0/150
提交評論