版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省揭陽(yáng)市重點(diǎn)名校2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知數(shù)列是等差數(shù)列,數(shù)列滿足,的前項(xiàng)和用表示,若滿足,則當(dāng)取得最大值時(shí),的值為()A.16 B.15 C.14 D.132.若,則下列不等式成立的是()A. B.C. D.3.演講比賽共有9位評(píng)委分別給出某選手的原始評(píng)分,評(píng)定該選手的成績(jī)時(shí),從9個(gè)原始評(píng)分中去掉1個(gè)最高分、1個(gè)最低分,得到7個(gè)有效評(píng)分.7個(gè)有效評(píng)分與9個(gè)原始評(píng)分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差4.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若,則△ABC是A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形5.底面是正方形,從頂點(diǎn)向底面作垂線,垂足是底面中心的四棱錐稱為正四棱錐.如圖,在正四棱錐中,底面邊長(zhǎng)為1.側(cè)棱長(zhǎng)為2,E為PC的中點(diǎn),則異面直線PA與BE所成角的余弦值為()A. B. C. D.6.在空間四邊形中,分別是的中點(diǎn).若,且與所成的角為,則四邊形的面積為()A. B. C. D.7.已知向量,,如果向量與平行,則實(shí)數(shù)的值為()A. B. C. D.8.在中,,,則的形狀是()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定9.給定函數(shù):①;②;③;④,其中奇函數(shù)是()A.① B.② C.③ D.④10.過(guò)點(diǎn)作拋物線的兩條切線,切點(diǎn)為,則的面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達(dá)式可改寫(xiě)為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點(diǎn)對(duì)稱;④y=f(x)的圖象關(guān)于直線x=﹣對(duì)稱.其中正確的命題的序號(hào)是.12.已知向量,,則______.13.如圖,以為直徑的圓中,,在圓上,,于,于,,記,,的面積和為,則的最大值為_(kāi)_____.14.等腰直角中,,CD是AB邊上的高,E是AC邊的中點(diǎn),現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為_(kāi)_______.15.已知,,若,則____16.若實(shí)數(shù),滿足,則的最小值為_(kāi)_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù),,值域?yàn)?,求常?shù)、的值;18.已知數(shù)列中,,,數(shù)列滿足。(1)求證:數(shù)列為等差數(shù)列。(2)求數(shù)列的通項(xiàng)公式。19.已知圓C過(guò)點(diǎn),且圓心C在直線上.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過(guò)點(diǎn)(2,3)的直線被圓C所截得的弦的長(zhǎng)是,求直線的方程.20.已知圓過(guò)點(diǎn),且與圓關(guān)于直線:對(duì)稱.(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)為圓上的一個(gè)動(dòng)點(diǎn),求的最小值.21.(1)任意向軸上這一區(qū)間內(nèi)投擲一個(gè)點(diǎn),則該點(diǎn)落在區(qū)間內(nèi)的概率是多少?(2)已知向量,,若,分別表示一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
設(shè)等差數(shù)列的公差為,根據(jù)得到,推出,判斷出當(dāng)時(shí),;時(shí),;再根據(jù),判斷出對(duì)取正負(fù)的影響,進(jìn)而可得出結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)閿?shù)列是等差數(shù)列,,所以,因此,所以,所以,,因此,當(dāng)時(shí),;時(shí),,因?yàn)?,所以?dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,所以;因?yàn)樗?,?dāng)時(shí),取得最大值.故選:A【點(diǎn)睛】本題主要考查等差數(shù)列的應(yīng)用,熟記等差數(shù)列的性質(zhì),及其函數(shù)特征即可,屬于??碱}型.2、D【解析】
取特殊值檢驗(yàn),利用排除法得答案?!驹斀狻恳?yàn)?,則當(dāng)時(shí),故A錯(cuò);當(dāng)時(shí),故B錯(cuò);當(dāng)時(shí),,故C錯(cuò);因?yàn)榍?,所以故選D.【點(diǎn)睛】本題考查不等式的基本性質(zhì),屬于簡(jiǎn)單題。3、A【解析】
可不用動(dòng)筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設(shè)9位評(píng)委評(píng)分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來(lái)平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來(lái)極差可能相等可能變小,D不正確.【點(diǎn)睛】本題旨在考查學(xué)生對(duì)中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.4、A【解析】
由正弦定理,記,則,,,又,所以,即,所以.故選:A.5、B【解析】
可采用建立空間直角坐標(biāo)系的方法來(lái)求兩條異面直線所成的夾角,【詳解】如圖所示,以正方形ABCD的中心為坐標(biāo)原點(diǎn),DA方向?yàn)閤軸,AB方向?yàn)閥軸,OP為z軸,建立空間直角坐標(biāo)系,,,由幾何關(guān)系可求得,,,,為中點(diǎn),,,,答案選B.【點(diǎn)睛】解決異面直線問(wèn)題常用兩種基本方法:異面直線轉(zhuǎn)化成共面直線、空間向量建系法6、A【解析】
連接EH,因?yàn)镋H是△ABD的中位線,所以EH∥BD,且EH=BD.同理,F(xiàn)G∥BD,且FG=BD,所以EH∥FG,且EH=FG.所以四邊形EFGH為平行四邊形.因?yàn)锳C=BD=a,AC與BD所成的角為60°所以EF=EH.所以四邊形EFGH為菱形,∠EFG=60°.∴四邊形EFGH的面積是2××()2=a2故答案為a2,故選A.考點(diǎn):本題主要是考查的知識(shí)點(diǎn)簡(jiǎn)單幾何體和公理四,公理四:和同一條直線平行的直線平行,證明菱形常用方法是先證明它是平行四邊形再證明鄰邊相等,以及面積公式屬于基礎(chǔ)題.點(diǎn)評(píng):解決該試題的關(guān)鍵是先證明四邊形EFGH為菱形,然后說(shuō)明∠EFG=60°,最后根據(jù)三角形的面積公式即可求出所求.7、B【解析】
根據(jù)坐標(biāo)運(yùn)算求出和,利用平行關(guān)系得到方程,解方程求得結(jié)果.【詳解】由題意得:,,解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示問(wèn)題,屬于基礎(chǔ)題.8、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判斷三角形的形狀.【詳解】在中,,解得:;∵,∵,,∴是直角三角形.故選:C.【點(diǎn)睛】本題考查余弦定理的應(yīng)用、三角形形狀的判定,考查邏輯推理能力和運(yùn)算求解能力.9、D【解析】試題分析:,知偶函數(shù),,知非奇非偶,知偶函數(shù),,知奇函數(shù).考點(diǎn):函數(shù)奇偶性定義.10、B【解析】設(shè)拋物線過(guò)點(diǎn)的切線方程為,即,將點(diǎn)代入可得,同理都滿足方程,即為直線的方程為,與拋物線聯(lián)立,可得,點(diǎn)到直線的距離,則的面積為,故選B.【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及弦長(zhǎng)公式與點(diǎn)到直線距離公式,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點(diǎn)出的切線斜率(當(dāng)曲線在處的切線與軸平行時(shí),在處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點(diǎn)對(duì)稱,③正確④不正確;故答案為①③.12、【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.13、【解析】
可設(shè),表示出S關(guān)于的函數(shù),從而轉(zhuǎn)化為三角函數(shù)的最大值問(wèn)題.【詳解】設(shè),則,,,當(dāng)時(shí),.【點(diǎn)睛】本題主要考查函數(shù)的實(shí)際運(yùn)用,三角函數(shù)最值問(wèn)題,意在考查學(xué)生的劃歸能力,分析能力和數(shù)學(xué)建模能力.14、【解析】
取的中點(diǎn),連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進(jìn)而求出異面直線直線DE與AB所成角.【詳解】取的中點(diǎn),連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點(diǎn)睛】本題考查立體幾何中的翻折問(wèn)題,考查了異面直線所成的角,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.15、【解析】
由,,得的坐標(biāo),根據(jù)得,由向量數(shù)量積的坐標(biāo)表示即可得結(jié)果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,兩向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.16、【解析】
由題意可得=≥2=2,由不等式的性質(zhì)變形可得.【詳解】∵正實(shí)數(shù)a,b滿足,∴=≥2=2,∴ab≥2當(dāng)且僅當(dāng)=即a=且b=2時(shí)取等號(hào).故答案為2.【點(diǎn)睛】本題考查基本不等式求最值,涉及不等式的性質(zhì),屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、,;或,;【解析】
先利用輔助角公式化簡(jiǎn),再根據(jù),值域?yàn)榍蠼饧纯?【詳解】.又則,當(dāng)時(shí),,此時(shí)當(dāng)時(shí),,此時(shí)故,;或,;【點(diǎn)睛】本題主要考查了三角函數(shù)的輔助角公式以及三角函數(shù)值域的問(wèn)題,需要根據(jù)自變量的范圍求出值域,同時(shí)注意正弦函數(shù)部分的系數(shù)正負(fù),屬于中等題型.18、(1)見(jiàn)解析;(2)【解析】
(1)將題目過(guò)給已知代入進(jìn)行化簡(jiǎn),結(jié)合的表達(dá)式,可證得為等差數(shù)列;(2)利用(1)的結(jié)論求得的通項(xiàng)公式,代入求得的通項(xiàng)公式.【詳解】(1)證明:由題意知,,又,故,又易知,故數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列。(2)由(1)知,所以由,可得,故數(shù)列的通項(xiàng)公式為?!军c(diǎn)睛】本小題第一問(wèn)考查利用數(shù)列的遞推公式證明數(shù)列為等差數(shù)列,然后利用這個(gè)等差數(shù)列來(lái)求另一個(gè)等差數(shù)列的通項(xiàng)公式.在解題過(guò)程中,只需要牢牢把握住等差數(shù)列的定義,利用等差數(shù)列的定義來(lái)證明.19、(1);(2)或.【解析】
(1)設(shè)圓心,由兩點(diǎn)間的距離及圓心在直線上,列出方程組,求解即可求出圓心坐標(biāo),進(jìn)而求出半徑,寫(xiě)出圓的方程(2)由的長(zhǎng)是,求出圓心到直線的距離,然后分直線斜率存在與不存在求解.【詳解】(1)設(shè)圓C的標(biāo)準(zhǔn)方程為依題意可得:解得,半徑.∴圓C的標(biāo)準(zhǔn)方程為;(2),∴圓心到直線m的距離①直線斜率不存在時(shí),直線m方程為:;②直線m斜率存在時(shí),設(shè)直線m為.,解得∴直線m的方程為∴直線m的方程為或.【點(diǎn)睛】本題主要考查了圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系,點(diǎn)到直線的距離,屬于中檔題.20、(1);(2).【解析】
試題分析:(1)兩個(gè)圓關(guān)于直線對(duì)稱,那么就是半徑相等,圓心關(guān)于直線對(duì)稱,利用斜率相乘等于和中點(diǎn)在直線上建立方程,解方程組求出圓心坐標(biāo),同時(shí)求得圓的半徑,由此求得圓的標(biāo)準(zhǔn)方程;(2)設(shè),則,代入化簡(jiǎn)得,利用三角換元,設(shè),所以.試題解析:(1)設(shè)圓心,則,解得,則圓的方程為,將點(diǎn)的坐標(biāo)代入得,故圓的方程為.(2)設(shè),則,且,令,∴,故的最小值為-1.考點(diǎn):直線與圓的位置關(guān)系,向量.2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 入廠打工合同范例
- 聚合物合成課程設(shè)計(jì)
- 新車(chē)分期租賃合同范例
- 定制窗戶配件合同范例
- 全科醫(yī)學(xué)導(dǎo)論模擬習(xí)題(含參考答案)
- 農(nóng)村水源地租賃合同范例
- 保姆雇傭合同范例
- 電車(chē)電池質(zhì)保合同范例
- 2025年西雙版納道路運(yùn)輸從業(yè)資格考試系統(tǒng)
- 果園管護(hù)合同范例
- 學(xué)校食堂應(yīng)對(duì)臨時(shí)增員的預(yù)案
- 康復(fù)治療技術(shù)歷年真題單選題100道及答案
- 北京郵電大學(xué)《自然語(yǔ)言處理基礎(chǔ)》2022-2023學(xué)年期末試卷
- 畢業(yè)答辯基于4P理論研究ZARA快時(shí)尚品牌在國(guó)內(nèi)的研究策略李丹
- 漢字文化解密學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 醫(yī)生給病人免責(zé)協(xié)議書(shū)(2篇)
- 滬科版2023~2024學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)預(yù)測(cè)卷(二)(含答案)
- 第二章 田徑-短跑途中跑技術(shù) 教案 2023-2024學(xué)年人教版初中體育與健康七年級(jí)全一冊(cè)
- 空運(yùn)陸運(yùn)操作崗位招聘面試題及回答建議(某大型國(guó)企)2024年
- 《元旦新氣象夢(mèng)想再起航》主題班會(huì)
- 2024-2030年中國(guó)集中供熱行業(yè)供需平衡與投資運(yùn)行模式規(guī)劃研究報(bào)告
評(píng)論
0/150
提交評(píng)論