版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省臨沂市某重點中學2023-2024學年數(shù)學高一下期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直線x+ay+4=0與直線ax+4y-3=0互相平行,則實數(shù)a的值為()A.±2 B.2 C.-2 D.02.已知為等差數(shù)列,為其前項和.若,則()A. B. C. D.3.已知三棱柱的側棱與底面邊長都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于()A. B. C. D.4.我國古代數(shù)學典籍《九章算術》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結果n=()A.2 B.3 C.4 D.55.函數(shù)圖像的一個對稱中心是()A. B. C. D.6.無論取何實數(shù),直線恒過一定點,則該定點坐標為()A. B. C. D.7.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.8.已知集合,,則A. B. C. D.9.如圖,PA垂直于以AB為直徑的圓所在平面,C為圓上異于A,B的任意一點,垂足為E,點F是PB上一點,則下列判斷中不正確的是()﹒A.平面PAC B. C. D.平面平面PBC10.計算的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設a>1,b>1.若關于x,y的方程組無解,則的取值范圍是.12.已知函數(shù),若函數(shù)恰有個零點,則實數(shù)的取值范圍為__________.13.過P(1,2)的直線把圓分成兩個弓形,當其中劣孤最短時直線的方程為_________.14.在中,內(nèi)角的對邊分別為,若的周長為,面積為,,則__________.15.函數(shù)的反函數(shù)為__________.16.下圖中的幾何體是由兩個有共同底面的圓錐組成.已知兩個圓錐的頂點分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點,B為底面圓周上的動點(不與A重合).下列四個結論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當直線BQ與AP所成角最小時,其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結論有___________.(寫出所有正確結論的編號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,已知,,,,設.(1)求(用表示);(2)求的最小值.(結果精確到米)18.己知函數(shù).(1)若,,求;(2)當為何值時,取得最大值,并求出最大值.19.某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關系可以近似地表示為:,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為元,若該項目不獲利,政府將給予補貼.(1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?20.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.21.在平面直角坐標系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)兩直線平性的必要條件可得4-a【詳解】∵直線x+ay+4=0與直線ax+4y-3=0互相平行;∴4×1-a?a=0,即4-a2=0當a=2時,直線分別為x+2y+4=0和2x+4y-3=0,平行,滿足條件當a=-2時,直線分別為x-2y+4=0和-2x+4y-3=0,平行,滿足條件;所以a=±2;故答案選A【點睛】本題考查兩直線平行的性質,解題時注意平行不包括重合的情況,屬于基礎題。2、D【解析】試題分析:設等差數(shù)列的公差為,由題意得,解得,所以,故答案為D.考點:1、數(shù)列的通項公式;2、數(shù)列的前項和.3、B【解析】由題意不妨令棱長為,如圖在底面內(nèi)的射影為的中心,故由勾股定理得過作平面,則為與底面所成角,且如圖作于中點與底面所成角的正弦值故答案選點睛:本題考查直線與平面所成的角,要先過點作垂線構造出線面角,然后計算出各邊長度,在直角三角形中解三角形.4、C【解析】開始,輸入,則,判斷,否,循環(huán),,則,判斷,否,循環(huán),則,判斷,否,循環(huán),則,判斷,是,輸出,結束.故選擇C.5、B【解析】
由題得,解出x的值即得函數(shù)圖像的一個對稱中心.【詳解】由題得,所以,所以圖像的對稱中心是.當k=1時,函數(shù)的對稱中心為.故選B【點睛】本題主要考查三角函數(shù)圖像的對稱中心的求法,意在考查學生對該知識的理解掌握水平,屬于基礎題.6、A【解析】
通過整理直線的形式,可求得所過的定點.【詳解】直線可整理為,當,解得,無論為何值,直線總過定點.故選A.【點睛】本題考查了直線過定點問題,屬于基礎題型.7、C【解析】
將1,2代入直線方程得到1a+2【詳解】將1,2代入直線方程得到1a+b=(a+b)(當a=2故答案選C【點睛】本題考查了直線方程,均值不等式,1的代換是解題的關鍵.8、C【解析】分析:由題意先解出集合A,進而得到結果。詳解:由集合A得,所以故答案選C.點睛:本題主要考查交集的運算,屬于基礎題。9、C【解析】
根據(jù)線面垂直的性質及判定,可判斷ABC選項,由面面垂直的判定可判斷D.【詳解】對于A,PA垂直于以AB為直徑的圓所在平面,而底面圓面,則,又由圓的性質可知,且,則平面PAC.所以A正確;對于B,由A可知,由題意可知,且,所以平面,而平面,所以,所以B正確;對于C,由B可知平面,因而與平面不垂直,所以不成立,所以C錯誤.對于D,由A、B可知,平面PAC,平面,由面面垂直的性質可得平面平面PBC.所以D正確;綜上可知,C為錯誤選項.故選:C.【點睛】本題考查了線面垂直的性質及判定,面面垂直的判定定理,屬于基礎題.10、D【解析】
直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:方程組無解等價于直線與直線平行,所以且.又,為正數(shù),所以(),即取值范圍是.考點:方程組的思想以及基本不等式的應用.12、【解析】
首先根據(jù)題意轉化為函數(shù)與有個交點,再畫出與的圖象,根據(jù)圖象即可得到的取值范圍.【詳解】有題知:函數(shù)恰有個零點,等價于函數(shù)與有個交點.當函數(shù)與相切時,即:,,,解得或(舍去).所以根據(jù)圖象可知:.故答案為:【點睛】本題主要考查函數(shù)的零點問題,同時考查了學生的轉化能力,體現(xiàn)了數(shù)形結合的思想,屬于中檔題.13、【解析】
首先根據(jù)圓的幾何性質,可分析出當點是弦的中點時,劣弧最短,利用圓心和弦的中點連線與直線垂直,可求得直線方程.【詳解】當劣弧最短時,即劣弧所對的弦最短,當點是弦的中點時,此時弦最短,也即劣弧最短,圓:,圓心,,,直線方程是,即,故填:.【點睛】本題考查了直線與圓的位置關系,以及圓的幾何性質,屬于基礎題型.14、3【解析】
分析:由題可知,中已知,面積公式選用,得,又利用余弦定理,即可求出的值.詳解:,,由余弦定理,得又,,解得.故答案為3.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結合已知條件靈活轉化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉化的方向;第二步:定工具,即根據(jù)條件和所求合理選擇轉化的工具,實施邊角之間的互化;第三步:求結果.15、【解析】
由得,即,把與互換即可得出【詳解】由得所以把與互換,可得故答案為:【點睛】本題考查的是反函數(shù)的求法,較簡單.16、①③【解析】
由①可知只需求點A到面的最大值對于②,求直線PB與平面PAQ所成角的最大值,可轉化為到軸截面距離的最大值問題進行求解對于③④,可采用建系法進行分析【詳解】選項①如圖所示,當時,四棱錐體積最大,選項②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項③和④,如圖所示:以垂直于方向為x軸,方向為y軸,方向為z軸,其中設,.,設直線BQ與AP所成角為,,當時,取到最大值,,此時,由于,,,所以取不到答案選①、③【點睛】幾何體的旋轉問題需要結合動態(tài)圖形和立體幾何基本知識進行求解,需找臨界點是正確解題的關鍵,遇到難以把握的最值問題,可采用建系法進行求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)米【解析】
(1)在中,由正弦定理,求得,再在中,利用正弦定理,即可求得的表達式;(2)在中,由正弦定理,求得,進而可得到,利用三角函數(shù)的性質,即可求解.【詳解】(1)由題意,在中,,由正弦定理,可得,即,在中,,由正弦定理,可得,即,(2)在中,由正弦定理,可得,即所以因為,所以所以當時,取得最小值最小值約為米.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中利用正弦、余弦定理可以很好地解決三角形的邊角關系,熟練掌握定理、合理運用是解本題的關鍵.通常當涉及兩邊及其中一邊的對角或兩角及其中一角對邊時,運用正弦定理求解;當涉及三邊或兩邊及其夾角時,運用余弦定理求解.18、(1);(1),1.【解析】
(1)由題得,再求出x的值;(1)先化簡得到,再利用三角函數(shù)的性質求函數(shù)的最大值及此時x的值.【詳解】(1)令,則,因為,所以.(1),當,即時,的最大值為1.【點睛】本題主要考查解簡單的三角方程,考查三角函數(shù)的最值,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19、(1)不能獲利,政府每月至少補貼元;(2)每月處理量為噸時,平均成本最低.【解析】
(1)利用:(生物的柴油總價值)(對應段的月處理成本)利潤,根據(jù)利潤的正負以及大小來判斷是否需要補貼,以及補貼多少;(2)考慮:(月處理成本)(月處理量)每噸的平均處理成本,即為,計算的最小值,注意分段.【詳解】(1)當時,該項目獲利為,則∴當時,,因此,該項目不會獲利當時,取得最大值,所以政府每月至少需要補貼元才能使該項目不虧損;(2)由題意可知,生活垃圾每噸的平均處理成本為:當時,所以當時,取得最小值;當時,當且僅當,即時,取得最小值因為,所以當每月處理量為噸時,才能使每噸的平均處理成本最低.【點睛】本題考查分段函數(shù)模型的實際運用,難度一般.(1)實際問題在求解的時候注意定義域問題;(2)利用基本不等式求解最值的時候,注意說明取等號的條件.20、(1)(2)存在,使不等式恒成立,詳見解析.【解析】
(1)由知函數(shù)關于對稱,求出后,通過構造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結合已知條件,解出;然后設存在實數(shù),,命題成立,運用根的判別式建立關于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年校園小賣部租賃合同及新品引進協(xié)議3篇
- 二零二五年度青少年心理輔導服務合同3篇
- 二零二五版建筑玻璃及裝飾材料購銷合同2篇
- 2024版軟件開發(fā)項目居間合同
- 2025別墅裝修室內(nèi)外照明設計與安裝合同3篇
- 2025年度林業(yè)資源綜合管理與技術服務承包合同樣本3篇
- 二零二四年份版權轉讓與授權合同3篇
- 2025年度體育場館設施抵押融資合同范本3篇
- 2025年度數(shù)據(jù)中心冷卻系統(tǒng)安裝合同范本6篇
- 二零二五版城市綜合體項目施工監(jiān)管服務合同3篇
- 新型電力系統(tǒng)簡介演示
- 特種設備行業(yè)團隊建設工作方案
- 眼內(nèi)炎患者護理查房課件
- 肯德基經(jīng)營策略分析報告總結
- 買賣合同簽訂和履行風險控制
- 中央空調現(xiàn)場施工技術總結(附圖)
- 水質-濁度的測定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書-2023.09
- -安規(guī)知識培訓
- 2021-2022學年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 污水處理廠設備安裝施工方案
評論
0/150
提交評論