版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省保定市名校中考考前最后一卷數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶52.如圖,在中,面積是16,的垂直平分線分別交邊于點,若點為邊的中點,點為線段上一動點,則周長的最小值為()A.6 B.8 C.10 D.123.“綠水青山就是金山銀山”.某工程隊承接了60萬平方米的荒山綠化任務(wù),為了迎接雨季的到來,實際工作時每天的工作效率比原計劃提高了25%,結(jié)果提前30天完成了這一任務(wù).設(shè)實際工作時每天綠化的面積為x萬平方米,則下面所列方程中正確的是()A. B.C. D.4.全球芯片制造已經(jīng)進入10納米到7納米器件的量產(chǎn)時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設(shè)備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學計數(shù)法表示為()A. B. C. D.5.的絕對值是()A.8 B.﹣8 C. D.﹣6.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.7.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.9.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.10.如圖,在△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=24°,則∠BDC的度數(shù)為()A.42° B.66° C.69° D.77°二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的解集是__.12.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點D,點E在AC上,直線DE與⊙O相切于點D.已知∠CDE=20°,則的長為_____.13.如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____14.如圖,直線x=2與反比例函數(shù)和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.15.2018年1月4日在萍鄉(xiāng)市第十五屆人民代表大會第三次會議報告指出,去年我市城鎮(zhèn)居民人均可支配收入33080元,33080用科學記數(shù)法可表示為__.16.二次根式中的字母a的取值范圍是_____.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,BD為對角線,AE⊥BD,CF⊥BD,垂足分別為E、F,連接AF、CE,求證:AF=CE.18.(8分)在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結(jié)論.19.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關(guān)于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.20.(8分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.21.(8分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.22.(10分)在矩形ABCD中,AB=6,AD=8,點E是邊AD上一點,EM⊥EC交AB于點M,點N在射線MB上,且AE是AM和AN的比例中項.如圖1,求證:∠ANE=∠DCE;如圖2,當點N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長;連接AC,如果△AEC與以點E、M、N為頂點所組成的三角形相似,求DE的長.23.(12分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).24.下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應(yīng)值,(表格中的符號“…”表示該項數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達式(2)拋物線y=ax2+bx+c的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上一點,直線AM交對稱軸右側(cè)的拋物線于點B,當△ADM與△BDM的面積比為2:3時,求B點坐標;(3)在(2)的條件下,設(shè)線段BD與x軸交于點C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據(jù)角平分線的性質(zhì)得到OD=OE=OF,根據(jù)三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故選C.【點睛】考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.2、C【解析】
連接AD,AM,由于△ABC是等腰三角形,點D是BC的中點,故,在根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AC的垂直平分線可知,點A關(guān)于直線EF的對稱點為點C,,推出,故AD的長為BM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,MA∵△ABC是等腰三角形,點D是BC邊上的中點∴∴解得∵EF是線段AC的垂直平分線∴點A關(guān)于直線EF的對稱點為點C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.【點睛】本題考查了三角形線段長度的問題,掌握等腰三角形的性質(zhì)、三角形的面積公式、垂直平分線的性質(zhì)是解題的關(guān)鍵.3、C【解析】分析:設(shè)實際工作時每天綠化的面積為x萬平方米,根據(jù)工作時間=工作總量÷工作效率結(jié)合提前30天完成任務(wù),即可得出關(guān)于x的分式方程.詳解:設(shè)實際工作時每天綠化的面積為x萬平方米,則原來每天綠化的面積為萬平方米,依題意得:,即.故選C.點睛:考查了由實際問題抽象出分式方程.找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.4、A【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】數(shù)據(jù)0.000000007用科學記數(shù)法表示為7×10-1.故選A.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、C【解析】
根據(jù)絕對值的計算法則解答.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:①當a是正有理數(shù)時,a的絕對值是它本身a;②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;③當a是零時,a的絕對值是零.【詳解】解:.故選【點睛】此題重點考查學生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關(guān)鍵.6、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.7、C【解析】
根據(jù)圓錐的底面周長等于側(cè)面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,
設(shè)圓錐的底面半徑是rcm,
則,
解得:.
即這個圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.
圓錐形冰淇淋紙?zhí)椎母邽椋?/p>
故選:C.【點睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應(yīng)關(guān)系:圓錐的母線長等于側(cè)面展開圖的扇形半徑;圓錐的底面周長等于側(cè)面展開圖的扇形弧長正確對這兩個關(guān)系的記憶是解題的關(guān)鍵.8、B【解析】
A.括號前是負號去括號都變號;B負次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【點睛】本題考查去括號法則的應(yīng)用,分式的性質(zhì),二次根式的算法,熟記知識點是解題的關(guān)鍵.9、C【解析】
先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結(jié)論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質(zhì),三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關(guān)鍵.10、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折疊的性質(zhì)可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、2≤x<1【解析】
分別解兩個不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點睛】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.12、7π【解析】
連接OD,由切線的性質(zhì)和已知條件可求出∠AOD的度數(shù),再根據(jù)弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【點睛】本題考查了切線的性質(zhì)、等腰三角形的判斷和性質(zhì)以及弧長公式的運用,求出∠AOD的度數(shù)是解題的關(guān)鍵.13、115°【解析】
根據(jù)三角形的內(nèi)角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質(zhì)得到AM=PM,PN=CN,由等腰三角形的性質(zhì)得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結(jié)論.【詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【點睛】本題考查了線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和,熟練掌握線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.14、.【解析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.15、3.308×1.【解析】
正確用科學計數(shù)法表示即可.【詳解】解:33080=3.308×1【點睛】科學記數(shù)法的表示形式為的形式,其中1<|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).16、a≥﹣1.【解析】
根據(jù)二次根式的被開方數(shù)為非負數(shù),可以得出關(guān)于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數(shù)為非負數(shù)是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、見解析【解析】
易證△ABE≌△CDF,得AE=CF,即可證得△AEF≌△CFE,即可得證.【詳解】在平行四邊形ABCD中,AB∥CD,AB=CD∴∠ABE=∠CDF,又AE⊥BD,CF⊥BD∴△ABE≌△CDF(AAS),∴AE=CF又∠AEF=∠CFE,EF=FE,∴△AEF≌△CFE(SAS)∴AF=CE.【點睛】此題主要考查平行四邊形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟知平行四邊形的性質(zhì)定理.18、(1)證明見解析;(2)△APQ是等邊三角形.【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得AB=AC,再根據(jù)SAS證明△ABP≌△ACQ;(2)根據(jù)全等三角形的性質(zhì)得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì),考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關(guān)鍵.19、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【解析】
(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用20、(1);(2)【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選中的恰好是正確答案A,B的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;
(2)畫樹狀圖:
共有12種等可能的結(jié)果數(shù),其中選中的恰好是正確答案A,B的結(jié)果數(shù)為2,
所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1);(2)和;(3)【解析】
(1)設(shè),,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標,設(shè)出點Q坐標,利用平行四邊形的性質(zhì),分類討論點P坐標,利用全等的性質(zhì)得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標;(3)過點作DH⊥軸于點,由::,可得::.設(shè),可得點坐標為,可得.設(shè)點坐標為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設(shè),,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為.②當以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標為,∴即點坐標為∴符合條件的點坐標為和.過點作DH⊥軸于點,∵::,∴::.設(shè),則點坐標為,∴.∵點在拋物線上,∴點坐標為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運用數(shù)形結(jié)合分類討論思想.22、(1)見解析;(2);(1)DE的長分別為或1.【解析】
(1)由比例中項知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當△AEC與以點E、M、N為頂點所組成的三角形相似時①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過點E作EH⊥AC,垂足為點H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設(shè)DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長分別為或1.【點睛】本題是相似三角形的綜合問題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識點.23、(1)見解析;(2)【解析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質(zhì),可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【點睛】本題主要考查切線的性質(zhì)與判定、扇形的面積等,解題關(guān)鍵在于用整體減去部分的方法計算.24、(1)y=x2﹣4x+2;(2)點B的坐標為(5,7);(1)∠BAD和∠DCO互補,理由詳見解析.【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 完善中小金融機構(gòu)風險管控能力與治理結(jié)構(gòu)的策略
- 2024年金融服務(wù)合同標的詳細描述帶眉腳
- 二零二五年度塔吊施工安全管理合同3篇
- 2025湖南省建筑安全員C證(專職安全員)考試題庫
- 2024糧食購銷合同集錦
- 二零二五年度二手房貸款合同變更合同2篇
- 2025版合同附件:環(huán)保企業(yè)綠色誠信協(xié)議3篇
- 2024能源管理服務(wù)合同能源審計與節(jié)能改造
- 2025版新型贍養(yǎng)責任保障協(xié)議范本2篇
- 2024版國家產(chǎn)權(quán)出讓專項合同版B版
- 2025年正規(guī)的離婚協(xié)議書
- 2025中國地震應(yīng)急搜救中心公開招聘應(yīng)屆畢業(yè)生5人高頻重點提升(共500題)附帶答案詳解
- 部編版八年級初二語文上冊第六單元《寫作表達要得體》說課稿
- 遼寧沈陽市文體旅產(chǎn)業(yè)發(fā)展集團有限公司招聘筆試沖刺題2024
- 公共衛(wèi)生管理制度(3篇)
- 政治-2025年八省適應(yīng)性聯(lián)考模擬演練考試暨2025年四川省新高考教研聯(lián)盟高三年級統(tǒng)一監(jiān)測試題和答案
- 2024年中國醫(yī)藥研發(fā)藍皮書
- 坍塌、垮塌事故專項應(yīng)急預(yù)案(3篇)
- 2024年融媒體中心事業(yè)單位考試工作人員另選錄用55人內(nèi)部選題庫及參考答案(研優(yōu)卷)
- 陜西省安康市2023-2024學年高一上學期期末考試 生物 含解析
- WPS Office辦公軟件應(yīng)用教學教案
評論
0/150
提交評論