




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省渾源縣2024屆高一下數(shù)學(xué)期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲.乙兩人同時從寢室到教室,甲一半路程步行,一半路程跑步,乙一半時間步行,一半時間跑步,如果兩人步行速度.跑步速度均相同,則()A.甲先到教室 B.乙先到教室C.兩人同時到教室 D.誰先到教室不確定2.已知x,y為正實數(shù),則()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx?2lgyC.2lgx?lgy=2lgx+2lgy D.2lg(xy)=2lgx?2lgy3.直線的斜率為()A. B. C. D.4.在如圖的正方體中,M、N分別為棱BC和棱的中點,則異面直線AC和MN所成的角為()A. B. C. D.5.高一數(shù)學(xué)興趣小組共有5人,編號為.若從中任選3人參加數(shù)學(xué)競賽,則選出的參賽選手的編號相連的概率為()A. B. C. D.6.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應(yīng)等乙半小時,而乙還有其他安排,若他早到則不需等待,則甲、乙兩人能見面的概率()A. B. C. D.7.已知等比數(shù)列的前項和為,若,則()A. B. C.5 D.68.同時拋擲兩個骰子,則向上的點數(shù)之和是的概率是()A. B. C. D.9.已知數(shù)列{an}的前n項和為Sn,Sn=2aA.145 B.114 C.810.已知,,為坐標原點,則的外接圓方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,函數(shù)的最小值為__________.12.在△中,三個內(nèi)角、、的對邊分別為、、,若,,,則________13.某銀行一年期定期儲蓄年利率為2.25%,如果存款到期不取出繼續(xù)留存于銀行,銀行自動將本金及80%的利息(利息須交納20%利息稅,由銀行代交)自動轉(zhuǎn)存一年期定期儲蓄,某人以一年期定期儲蓄存入銀行20萬元,則5年后,這筆錢款交納利息稅后的本利和為________元.(精確到1元)14.在平面直角坐標系中,已知圓:,圓:,動點在直線:上(),過分別作圓,的切線,切點分別為,,若滿足的點有且只有一個,則實數(shù)的值為______.15.在行列式中,元素的代數(shù)余子式的值是________.16.?dāng)?shù)列滿足:(且為常數(shù)),,當(dāng)時,則數(shù)列的前項的和為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓經(jīng)過點,且圓心在直線:上.(1)求圓的方程;(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.18.設(shè)數(shù)列的前項和為,已知(Ⅰ)求,并求數(shù)列的通項公式;(Ⅱ)求數(shù)列的前項和.19.某市地鐵全線共有四個車站,甲、乙兩人同時在地鐵第1號車站(首發(fā)站)乘車,假設(shè)每人自第2號站開始,在每個車站下車是等可能的,約定用有序?qū)崝?shù)對表示“甲在號車站下車,乙在號車站下車”(Ⅰ)用有序?qū)崝?shù)對把甲、乙兩人下車的所有可能的結(jié)果列舉出來;(Ⅱ)求甲、乙兩人同在第3號車站下車的概率;(Ⅲ)求甲、乙兩人在不同的車站下車的概率.20.某校準備從高一年級的兩個男生和三個女生中選擇2個人去參加一項比賽.(1)若從這5個學(xué)生中任選2個人,求這2個人都是女生的概率;(2)若從男生和女生中各選1個人,求這2個人包括,但不包括的概率.21.如圖,在四邊形中,已知,,,,設(shè).(1)求(用表示);(2)求的最小值.(結(jié)果精確到米)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
設(shè)兩人步行,跑步的速度分別為,().圖書館到教室的路程為,再分別表示甲乙的時間,作商比較即可.【詳解】設(shè)兩人步行、跑步的速度分別為,().圖書館到教室的路程為.則甲所用的時間為:.乙所用的時間,滿足+,解得.則===1.∴.故乙先到教室.故選:B.【點睛】本題考查了路程與速度、時間的關(guān)系、基本不等式的性質(zhì),屬于基礎(chǔ)題.2、D【解析】因為as+t=as?at,lg(xy)=lgx+lgy(x,y為正實數(shù)),所以2lg(xy)=2lgx+lgy=2lgx?2lgy,滿足上述兩個公式,故選D.3、A【解析】
化直線方程為斜截式求解.【詳解】直線可化為,∴直線的斜率是,故選:A.【點睛】本題考查直線方程,將一般方程轉(zhuǎn)化為斜截式方程即可得直線的斜率,屬于基礎(chǔ)題.4、C【解析】
將平移到一起,根據(jù)等邊三角形的性質(zhì)判斷出兩條異面直線所成角的大小.【詳解】連接如下圖所示,由于分別是棱和棱的中點,故,根據(jù)正方體的性質(zhì)可知,所以是異面直線所成的角,而三角形為等邊三角形,故.故選C.【點睛】本小題主要考查空間異面直線所成角的大小的求法,考查空間想象能力,屬于基礎(chǔ)題.5、A【解析】
先考慮從個人中選取個人參加數(shù)學(xué)競賽的基本事件總數(shù),再分析選出的參賽選手的編號相連的事件數(shù),根據(jù)古典概型的概率計算得到結(jié)果.【詳解】因為從個人中選取個人參加數(shù)學(xué)競賽的基本事件有:,共種,又因為選出的參賽選手的編號相連的事件有:,共種,所以目標事件的概率為.故選:A.【點睛】本題考查古典概型的簡單應(yīng)用,難度較易.求解古典概型問題的常規(guī)思路:先計算出基本事件的總數(shù),然后計算出目標事件的個數(shù),目標事件的個數(shù)比上基本事件的總數(shù)即可計算出對應(yīng)的概率.6、A【解析】設(shè)甲到達時刻為,乙到達時刻為,依題意列不等式組為,畫出可行域如下圖陰影部分,故概率為.7、A【解析】
先通分,再利用等比數(shù)列的性質(zhì)求和即可?!驹斀狻浚蔬xA.【點睛】本題考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題。8、C【解析】
由題意可知,基本事件總數(shù)為,然后列舉出事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件,利用古典概型的概率公式可計算出所求事件的概率.【詳解】同時拋擲兩個骰子,共有個基本事件,事件“同時拋擲兩個骰子,向上的點數(shù)之和是”所包含的基本事件有:、、、、,共個基本事件.因此,所求事件的概率為.故選:C.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎(chǔ)題.9、B【解析】
由Sn=2an-2,可得Sn-1=2an-1-2兩式相減可得公比的值,由S1=2a1-2=【詳解】因為Sn=2a兩式相減化簡可得an公比q=a由S1=2a∵a則4×2m+n-2=64∴1當(dāng)且僅當(dāng)nm=9mn時取等號,此時∵m,n取整數(shù),∴均值不等式等號條件取不到,則1m驗證可得,當(dāng)m=2,n=4時,1m+9【點睛】本題主要考查等比數(shù)列的定義與通項公式的應(yīng)用以及利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用≥或≤時等號能否同時成立).10、A【解析】
根據(jù)圓的幾何性質(zhì)判斷出是直徑,由此求得圓心坐標和半徑,進而求得三角形外接圓的方程.【詳解】由于直角對的弦是直徑,故是圓的直徑,所以圓心坐標為,半徑為,所以圓的標準方程為,化簡得,故選A.【點睛】本小題主要考查三角形外接圓的方程的求法,考查圓的幾何性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、5【解析】
變形后利用基本不等式可得最小值.【詳解】∵,∴4x-5>0,∴當(dāng)且僅當(dāng)時,取等號,即時,有最小值5【點睛】本題考查利用基本不等式求最值,湊出可利用基本不等式的形式是解決問題的關(guān)鍵,使用基本不等式時要注意“一正二定三相等”的法則.12、【解析】
利用正弦定理求解角,再利用面積公式求解即可.【詳解】由,因為,故,.故.故答案為:【點睛】本題主要考查了解三角形的運用,根據(jù)題中所給的邊角關(guān)系選擇正弦定理與面積公式等.屬于基礎(chǔ)題型.13、218660【解析】
20萬存款滿一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(【詳解】20萬存款滿一年到期后利息有200000×2.25%×(1-20%),本息和共200000×2.25%×(200000×(1.018)故填218660.【點睛】本題主要考查了銀行存款的復(fù)利問題,由固定公式可用,本息和=本金×(1+利率×(1-14、.【解析】
根據(jù)圓的切線的性質(zhì)和三角形全等,得到,求得點的軌跡方程,再根據(jù)直線與圓相切,利用圓心到直線的距離等于半徑,即可求解.【詳解】由題意得:,,設(shè),如下圖所示∵PA、PB分別是圓O,O1的切線,∴∠PBO1=∠PAO=90°,又∵PB=2PA,BO1=2AO,∴△PBO1∽△PAO,∴,∴,∴,整理得,∴點P(x,y)的軌跡是以為圓心、半徑等于的圓,∵動點P在直線:上(),滿足PB=2PA的點P有且只有一個,∴該直線l與圓相切,∴圓心到直線l的距離d滿足,即,解得或,又因為,所以.【點睛】本題主要考查了圓的切線的性質(zhì),以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中根據(jù)圓的切下的性質(zhì)和三角形全等求得點的軌跡方程,再根據(jù)直線與圓相切,列出方程求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.15、【解析】
根據(jù)余子式的定義,要求的代數(shù)余子式的值,這個元素在三階行列式中的位置是第一行第二列,那么化去第一行第二列得到的代數(shù)余子式,解出即可.【詳解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代數(shù)余子式為:解這個余子式的值為,故元素的代數(shù)余子式的值是.故答案為:【點睛】考查學(xué)生會求行列式中元素的代數(shù)余子式,行列式的計算方法,屬于基礎(chǔ)題.16、【解析】
直接利用分組法和分類討論思想求出數(shù)列的和.【詳解】數(shù)列滿足:(且為常數(shù)),,當(dāng)時,則,所以(常數(shù)),故,所以數(shù)列的前項為首項為,公差為的等差數(shù)列.從項開始,由于,所以奇數(shù)項為、偶數(shù)項為,所以,故答案為:【點睛】本題考查了由遞推關(guān)系式求數(shù)列的性質(zhì)、等差數(shù)列的前項和公式,需熟記公式,同時也考查了分類討論的思想,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)在直線上存在定點,使得恒成立,詳見解析【解析】
(1)求出弦中垂線方程,由中垂線和直線相交得圓心坐標,再求出圓半徑,從而得圓標準方程;(2)直線斜率存在時,設(shè)方程為,代入圓的方程,得的一元二次方程,同時設(shè)交點為由韋達定理得,假設(shè)定點存在,設(shè)其為,由求得,再驗證所作直線斜率不存在時,點也滿足題意.【詳解】(1)的中點為,∴的垂直平分線的斜率為,∴的垂直平分線的方程為,∴的垂直平分線與直線交點為圓心,則,解得,又.∴圓的方程為.(2)當(dāng)直線的斜率存在時,設(shè)直線的斜率為,則過點的直線方程為,故由,整理得,設(shè),設(shè),則,,,即,當(dāng)斜率不存在時,成立,∴在直線上存在定點,使得恒成立【點睛】本題考查求圓的標準方程,考查與圓有關(guān)的定點問題.求圓的標準方程可先求出圓心坐標和圓的半徑,然后得標準方程,注意圓心一定在弦的中垂線上.定點問題,通常用設(shè)而不求思想,即設(shè)直線方程與圓方程聯(lián)立消元后得一元二次方程,設(shè)直線與圓的交點坐標為,由韋達定理得,然后設(shè)定點坐標如本題,再由條件求出,若不能求出說明定點不存在,如能求出值,注意驗證直線斜率不存在時,此定點也滿足題意.18、(1),;(2).【解析】試題分析:本題主要考查由求、等比數(shù)列的通項公式、等比數(shù)列的前n項和公式、錯位相減法等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,由求,利用,分兩部分求和,經(jīng)判斷得數(shù)列為等比數(shù)列;第二問,結(jié)合第一問的結(jié)論,利用錯位相減法,結(jié)合等比數(shù)列的前n項和公式,計算化簡.試題解析:(Ⅰ)時所以時,是首項為、公比為的等比數(shù)列,,.(Ⅱ)錯位相減得:.考點:求、等比數(shù)列的通項公式、等比數(shù)列的前n項和公式、錯位相減法.19、(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)(Ⅲ)【解析】(Ⅰ)甲、乙兩人下車的所有可能的結(jié)果為(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(Ⅱ)設(shè)甲、乙兩人同在第3號車站下車的的事件為A,則(Ⅲ)設(shè)甲、乙兩人在不同的車站下車的事件為B,則20、(1);(2).【解析】
(1)寫出從5個學(xué)生中任選2個人的所有等可能基本事件,計算事件2個人都是女生所含的基本事件個數(shù);(2)寫出從男生和女生中各選1個人的所有等可能基本事件,計算事件2個人包括,但不包括所含的基本事件個數(shù).【詳解】(1)由題意知,從5個學(xué)生中任選2個人,其所有等可能基本事件有:,,,,,,,,,,共10個,選2個人都是女生的事件所包含的基本事件有,,,共3個,則所求事件的概率為.(2)從男生和女生中各選1個人,其所有可能的結(jié)果組成的基本事件有,,,,,,共6個,包括,但不包括的事件所包含的基本事件有,,共2個,則所求事件的概率為.【點睛】本題的兩問均考查利用古典概型的概率計算公式,求事件發(fā)生的概率,求解過程中要求列出所有等可能結(jié)果,并指出事件所包含的基本事件個數(shù),最后代入公式計算概率.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中介轉(zhuǎn)租店鋪合同范本
- 修橋施工合同范本
- 書籍編輯服務(wù)合同范本
- 公司員工騎電動車合同范本
- 涼亭施工合同范本
- 勞務(wù)公司代購合同范本
- 東航空乘合同范本
- 個人轉(zhuǎn)讓單位合同范本
- 公司臨聘合同范本
- 冰箱肉類采購合同范本
- DB11∕512-2017 建筑裝飾工程石材應(yīng)用技術(shù)規(guī)程
- 高考數(shù)學(xué)導(dǎo)數(shù)知識題型全歸納專題11導(dǎo)數(shù)壓軸題之隱零點問題(原卷版+解析)
- 員工二級安全教育培訓(xùn)試題及答案
- 【課件】2024高考英語新課標讀后續(xù)寫說題課件
- 2024年中國油缸用導(dǎo)向環(huán)市場調(diào)查研究報告
- 2024年度中國AI大模型場景探索及產(chǎn)業(yè)應(yīng)用調(diào)研報告-2024
- MMG-23600-半導(dǎo)體光刻機翻新市場調(diào)研報告全球行業(yè)規(guī)模展望2024-2030 Sample
- 老年人的心理健康(共29張課件)
- 教學(xué)課件《變革與突破-19世紀西方美術(shù)》
- 統(tǒng)編版語文三年級下冊課堂筆記丨可下載打印
- 大學(xué)英語四級必背單詞詞匯資料表
評論
0/150
提交評論