四川省成都市東辰國(guó)際學(xué)校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
四川省成都市東辰國(guó)際學(xué)校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
四川省成都市東辰國(guó)際學(xué)校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
四川省成都市東辰國(guó)際學(xué)校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
四川省成都市東辰國(guó)際學(xué)校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省成都市東辰國(guó)際學(xué)校2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某學(xué)校高一、高二、高三教師人數(shù)分別為100、120、80,為了解他們?cè)凇皩W(xué)習(xí)強(qiáng)國(guó)”平臺(tái)上的學(xué)習(xí)情況,現(xiàn)用分層抽樣的方法抽取容量為45的樣本,則抽取高一教師的人數(shù)為()A.12 B.15 C.18 D.302.直線的傾斜角的取值范圍是()A. B. C. D.3.圓的半徑是,則的圓心角與圓弧圍成的扇形面積是()A. B. C. D.4.已知函數(shù)(其中),對(duì)任意實(shí)數(shù)a,在區(qū)間上要使函數(shù)值出現(xiàn)的次數(shù)不少于4次且不多于8次,則k值為()A.2或3 B.4或3 C.5或6 D.8或75.設(shè)數(shù)列滿足,且,則數(shù)列中的最大項(xiàng)為()A. B. C. D.6.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為()A. B. C. D.7.若正方體的棱長(zhǎng)為,點(diǎn),在上運(yùn)動(dòng),,四面體的體積為,則()A. B. C. D.8.已知等比數(shù)列的前項(xiàng)和為,,,則()A.31 B.15 C.8 D.79.已知在中,為線段上一點(diǎn),且,若,則()A. B. C. D.10.已知平面平面,直線,直線,則直線,的位置關(guān)系為()A.平行或相交 B.相交或異面 C.平行或異面 D.平行?相交或異面二、填空題:本大題共6小題,每小題5分,共30分。11.在邊長(zhǎng)為2的菱形中,,是對(duì)角線與的交點(diǎn),若點(diǎn)是線段上的動(dòng)點(diǎn),且點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,則的最小值為______.12.已知,,若,則實(shí)數(shù)_______.13.設(shè)O點(diǎn)在內(nèi)部,且有,則的面積與的面積的比為.14.若數(shù)列滿足,且對(duì)于任意的,都有,則___;數(shù)列前10項(xiàng)的和____.15.設(shè)變量滿足條件,則的最小值為___________16.在單位圓中,面積為1的扇形所對(duì)的圓心角的弧度數(shù)為_.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量,,.(1)若、、三點(diǎn)共線,求;(2)求的面積.18.如圖,三棱柱,底面,且為正三角形,,,為中點(diǎn).(1)求證:直線平面;(2)求二面角的大小.19.如圖,在四棱錐中,,底面是矩形,側(cè)面底面,是的中點(diǎn).(1)求證:平面;(2)求證:平面.20.在銳角中,角的對(duì)邊分別是,且.(1)求角的大小;(2)若,求面積的最大值.21.已知關(guān)于的一元二次函數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的一次項(xiàng)系數(shù).(1)若,,求函數(shù)有零點(diǎn)的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由分層抽樣方法即按比例抽樣,運(yùn)算即可得解.【詳解】解:由分層抽樣方法可得抽取高一教師的人數(shù)為,故選:B.【點(diǎn)睛】本題考查了分層抽樣方法,屬基礎(chǔ)題.2、B【解析】

由直線的方程可確定直線的斜率,可得其范圍,進(jìn)而可求傾斜角的取值范圍.【詳解】解:直線的斜率為,,根據(jù)正切函數(shù)的性質(zhì)可得傾斜角的取值范圍是故選:.【點(diǎn)睛】本題考查直線的斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.3、C【解析】

先將化為弧度數(shù),再利用扇形面積計(jì)算公式即可得出.【詳解】所以扇形的面積為:故選:C【點(diǎn)睛】題考查了扇形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.4、A【解析】

根據(jù)題意先表示出函數(shù)的周期,然后根據(jù)函數(shù)值出現(xiàn)的次數(shù)不少于4次且不多于8次,得到周期的范圍,從而得到關(guān)于的不等式,從而得到的范圍,結(jié)合,得到答案.【詳解】函數(shù),所以可得,因?yàn)樵趨^(qū)間上,函數(shù)值出現(xiàn)的次數(shù)不少于4次且不多于8次,所以得即與的圖像在區(qū)間上的交點(diǎn)個(gè)數(shù)大于等于4,小于等于8,而與的圖像在一個(gè)周期內(nèi)有2個(gè),所以,即解得,又因,所以得或者,故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的圖像與性質(zhì),根據(jù)周期性求參數(shù)的值,函數(shù)與方程,屬于中檔題.5、A【解析】

利用累加法求得的通項(xiàng)公式,再根據(jù)的單調(diào)性求得最大項(xiàng).【詳解】因?yàn)楣使蕜t,其最大項(xiàng)是的最小項(xiàng)的倒數(shù),又,當(dāng)且僅當(dāng)或時(shí),取得最小值7.故得最大項(xiàng)為.故選:A.【點(diǎn)睛】本題考查由累加法求數(shù)列的通項(xiàng)公式,以及數(shù)列的單調(diào)性,屬綜合基礎(chǔ)題.6、D【解析】

以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,再利用向量法求出異面直線AE與BF所成角的余弦值.【詳解】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1中棱長(zhǎng)為2,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),A(2,0,0),E(0,1,2),B(2,2,0),F(xiàn)(0,2,1),=(﹣2,1,2),=(﹣2,0,1),設(shè)異面直線AE與BF所成角的平面角為θ,則cosθ===,∴異面直線AE與BF所成角的余弦值為.故選D.【點(diǎn)睛】本題考查異面直線所成角的余弦值的求法,注意向量法的合理運(yùn)用,屬于基礎(chǔ)題.7、C【解析】

由題意得,到平面的距離不變=,且,即可得三棱錐的體積,利用等體積法得.【詳解】正方體的棱長(zhǎng)為,點(diǎn),在上運(yùn)動(dòng),,如圖所示:點(diǎn)到平面的距離=,且,所以.所以三棱錐的體積=.利用等體積法得.故選:C.【點(diǎn)睛】本題考查了正方體的性質(zhì),等體積法求三棱錐的體積,屬于基礎(chǔ)題.8、B【解析】

利用基本元的思想,將已知條件轉(zhuǎn)化為的形式,由此求得,進(jìn)而求得.【詳解】由于數(shù)列是等比數(shù)列,故,由于,故解得,所以.故選:B.【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量的計(jì)算,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.9、C【解析】

首先,由已知條件可知,再有,這樣可用表示出.【詳解】∵,∴,,∴,∴.故選C.【點(diǎn)睛】本題考查平面向量基本定理,解題時(shí)用向量加減法表示出,然后用基底表示即可.10、C【解析】

根據(jù)直線與直線的位置關(guān)系,結(jié)合題意,進(jìn)行選擇.【詳解】因?yàn)槠矫嫫矫?,直線,直線,所以直線沒(méi)有公共點(diǎn),所以兩條直線平行或異面.故選:C.【點(diǎn)睛】本題考查直線與直線的位置關(guān)系,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、-6【解析】

由題意,然后結(jié)合向量共線及數(shù)量積運(yùn)算可得,再將已知條件代入求解即可.【詳解】解:菱形的對(duì)稱性知,在線段上,且,設(shè),則,所以,又因?yàn)?,?dāng)時(shí),取得最小值-6.故答案為:-6.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,重點(diǎn)考查了向量共線及數(shù)量積運(yùn)算,屬中檔題.12、【解析】

利用平面向量垂直的數(shù)量積關(guān)系可得,再利用數(shù)量積的坐標(biāo)運(yùn)算可得:,解方程即可.【詳解】因?yàn)?,所以,整理得:,解得:【點(diǎn)睛】本題主要考查了平面向量垂直的坐標(biāo)關(guān)系及方程思想,屬于基礎(chǔ)題.13、3【解析】

分別取AC、BC的中點(diǎn)D、E,

,

,即,

是DE的一個(gè)三等分點(diǎn),

,

故答案為:3.14、,【解析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點(diǎn):等比數(shù)列通項(xiàng)與和項(xiàng)15、-1【解析】

根據(jù)線性規(guī)劃的基本方法求解即可.【詳解】畫出可行域有:因?yàn)?根據(jù)當(dāng)直線縱截距最大時(shí),取得最小值.由圖易得在處取得最小值.故答案為:【點(diǎn)睛】本題主要考查了線性規(guī)劃的基本運(yùn)用,屬于基礎(chǔ)題.16、2【解析】試題分析:由題意可得:.考點(diǎn):扇形的面積公式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)題意,若、、三點(diǎn)共線,則表達(dá)和,根據(jù)向量共線定理的坐標(biāo)表示,可求解參數(shù)值,即可求解模長(zhǎng).(2)根據(jù)題意,先求,,再求向量、的夾角,代入三角形面積公式,即可求解.【詳解】解:(1)已知向量,,∴,,由點(diǎn)、、三點(diǎn)共線,得.解得.,(3)因?yàn)?,,所以,,,,,【點(diǎn)睛】本題考查(1)向量共線的坐標(biāo)表示;(2)三角形面積公式;考查計(jì)算能力,屬于基礎(chǔ)題.18、(1)證明見解析;(2).【解析】

(1)連交于,連,則點(diǎn)為中點(diǎn),為中點(diǎn),得,即可證明結(jié)論;(1)為正三角形,為中點(diǎn),可得,再由底面,得底面,得,可證平面,有,為的平面角,解,即可求出結(jié)論.【詳解】(1)連交于,連,三棱柱,側(cè)面為平行四邊形,所以點(diǎn)為中點(diǎn),為中點(diǎn),所以,因?yàn)槠矫?,平面,所以直線平面;(2)為正三角形,為中點(diǎn),可得,三棱柱,所以,底面,所以底面,底面,所以,又平面,所以平面,平面,所以,為的平面角,在中,,,所以,所以二面角的大小為.【點(diǎn)睛】本題考查線面平行的證明,用幾何法求二面角的平面角,做出二面角的平面角是解題的關(guān)鍵,屬于中檔題.19、(1)證明見解析;(2)證明見解析.【解析】

(1)利用即可證明;(2)由面面垂直的性質(zhì)即可證明.【詳解】證明:(1)在四棱錐中,底面是矩形,,又平面,平面;平面;(2)側(cè)面底面,側(cè)面平面,,平面,平面【點(diǎn)睛】本題考查了空間線面平行、垂直的證明,屬于基礎(chǔ)題.20、(1);(2)【解析】

(1)利用正弦定理邊轉(zhuǎn)化為角,逐步化簡(jiǎn),即可得到本題答案;(2)由余弦定理得,,綜合,得,從而可得到本題答案.【詳解】(1)因?yàn)?,所以,即,所以,又,所以,由為銳角三角形,則;(2)因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào)),所以.【點(diǎn)睛】本題主要考查利用正弦定理邊角轉(zhuǎn)化求角,以及余弦定理和基本不等式綜合運(yùn)用求三角形面積的最大值.21、(1);(2)【解析】

(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關(guān)系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【詳解】(1)由題可得,,從集合中隨機(jī)取一個(gè)數(shù)作為此函數(shù)的二次項(xiàng)系數(shù),從集合中隨機(jī)取一

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論