衡水中學2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
衡水中學2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
衡水中學2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
衡水中學2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
衡水中學2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

衡水中學2025屆高一下數(shù)學期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的定義域是().A. B. C. D.2.某市在“一帶一路”國際合作高峰論壇前夕,在全市高中學生中進行“我和‘一帶一路’”的學習征文,收到的稿件經(jīng)分類統(tǒng)計,得到如圖所示的扇形統(tǒng)計圖.又已知全市高一年級共交稿2000份,則高三年級的交稿數(shù)為()A.2800 B.3000 C.3200 D.34003.如果連續(xù)拋擲一枚質(zhì)地均勻的骰子100次,那么第95次出現(xiàn)正面朝上的點數(shù)為4的概率為()A. B. C. D.4.如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點,AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列說法中正確的個數(shù)()①AC∥平面BEF;②B、C、E、F四點可能共面;③若EF⊥CF,則平面ADEF⊥平面ABCD;④平面BCE與平面BEF可能垂直A.0 B.1 C.2 D.35.如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是()①;②;③與平面所成的角為;④四面體的體積為.A.個 B.個 C.個 D.個6.等比數(shù)列的各項均為正數(shù),且,則()A. B. C. D.7.已知點,直線過點,且與線段相交,則直線的斜率滿足()A.或 B.或 C. D.8.平面向量與的夾角為,,,則A. B.12 C.4 D.9.已知圓截直線所得弦的長度為4,則實數(shù)a的值是A. B. C. D.10.在各項均為正數(shù)的數(shù)列中,對任意都有.若,則等于()A.256 B.510 C.512 D.1024二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列中,,當時,,數(shù)列的前項和為_____.12.給出以下四個結(jié)論:①平行于同一直線的兩條直線互相平行;②垂直于同一平面的兩個平面互相平行;③若,是兩個平面;,是異面直線;且,,,,則;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心;其中錯誤結(jié)論的序號為__________.(要求填上所有錯誤結(jié)論的序號)13.已知,,,則的最小值為______.14.求的值為________.15.若實數(shù)滿足,,則__________.16.已知等差數(shù)列的前n項和為,若,則的值為______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系中,銳角、的終邊分別與單位圓交于、兩點.(1)如果,點的橫坐標為,求的值;(2)已知點,函數(shù),若,求.18.在平面直角坐標系xOy中,已知點P是直線與直線的交點.(1)求點P的坐標;(2)若直線l過點P,且與直線垂直,求直線l的方程.19.已知數(shù)列的前項和為,,.(1)求數(shù)列的通項公式;(2)在數(shù)列中,,其前項和為,求的取值范圍.20.若的最小值為.(1)求的表達式;(2)求能使的值,并求當取此值時,的最大值.21.已知等差數(shù)列的前n項和為,且,.(1)求;(2)設數(shù)列的前n項和為,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】函數(shù)的定義域即讓原函數(shù)有意義即可;原式中有對數(shù),則故得到定義域為.故選C.2、D【解析】

先求出總的稿件的數(shù)量,再求出高三年級交稿數(shù)占總交稿數(shù)的比例,再求高三年級的交稿數(shù).【詳解】高一年級交稿2000份,在總交稿數(shù)中占比,所以總交稿數(shù)為,高二年級交稿數(shù)占總交稿數(shù)的,所以高三年級交稿數(shù)占總交稿數(shù)的,所以高三年級交稿數(shù)為.故選D【點睛】本題主要考查扇形統(tǒng)計圖的有關(guān)計算,意在考查學生對該知識的理解掌握水平,屬于基礎題.3、B【解析】

由隨機事件的概念作答.【詳解】拋擲一枚質(zhì)地均勻的骰子,出現(xiàn)正面朝上的點數(shù)為4,這個事件是隨機事件,每次拋擲出現(xiàn)的概率是相等的,都是,不會隨機拋擲次數(shù)的變化而變化.故選:B.【點睛】本題考查隨機事件的概率,屬于基礎題.4、C【解析】

根據(jù)折疊前后線段、角的變化情況,由線面平行、面面垂直的判定定理和性質(zhì)定理對各命題進行判斷,即可得出答案.【詳解】對①,在圖②中,連接交于點,取中點,連接MO,易證AOMF為平行四邊形,即AC//FM,所以AC//平面BEF,故①正確;對②,如果B、C、E、F四點共面,則由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,這樣四邊形ADEF為平行四邊形,與已知矛盾,故②不正確;對③,在梯形ADEF中,由平面幾何知識易得EFFD,又EFCF,∴EF平面CDF,即有CDEF,∴CD平面ADEF,則平面ADEF平面ABCD,故③正確;對④,在圖②中,延長AF至G,使得AF=FG,連接BG,EG,易得平面BCE平面ABF,BCEG四點共面.過F作FNBG于N,則FN平面BCE,若平面BCE平面BEF,則過F作直線與平面BCE垂直,其垂足在BE上,矛盾,故④錯誤.故選:C.【點睛】本題主要考查線面平行、線面垂直、面面垂直的判定定理和性質(zhì)定理的應用,意在考查學生的直觀想象能力和邏輯推理能力,屬于中檔題.5、B【解析】

根據(jù)題意,依次分析命題:對于①,可利用反證法說明真假;對于②,為等腰直角三角形,平面,得平面,根據(jù)勾股定理逆定理可知;對于③,由與平面所成的角為知真假;對于④,利用等體積法求出所求體積進行判定即可,綜合可得答案.【詳解】在四邊形中,,,則,可得,由,若,且,可得平面,平面,,這與矛盾,故①不正確;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正確;由②知平面,則直線與平面所成的角為,且有,,則為等腰直角三角形,且,則.故③不正確;四面體的體積為,故④不正確.故選:B.【點睛】本題主要考查了直線與平面所成的角,以及三棱錐的體積的計算,考查了空間想象能力,推理論證能力,解題的關(guān)鍵是須對每一個進行逐一判定.6、D【解析】

本題首先可根據(jù)數(shù)列是各項均為正數(shù)的等比數(shù)列以及計算出的值,然后根據(jù)對數(shù)的相關(guān)運算以及等比中項的相關(guān)性質(zhì)即可得出結(jié)果.【詳解】因為等比數(shù)列的各項均為正數(shù),,所以,,所以,故選D.【點睛】本題考查對數(shù)的相關(guān)運算以及等比中項的相關(guān)性質(zhì),考查的公式為以及在等比數(shù)列中有,考查計算能力,是簡單題.7、A【解析】

畫出三點的圖像,根據(jù)的斜率,求得直線斜率的取值范圍.【詳解】如圖所示,過點作直線軸交線段于點,作由直線①直線與線段的交點在線段(除去點)上時,直線的傾斜角為鈍角,斜率的范圍是.②直線與線段的交點在線段(除去點)上時,直線的傾斜角為銳角,斜率的范圍是.因為,,所以直線的斜率滿足或.故選:A.【點睛】本小題主要考查兩點求斜率的公式,考查數(shù)形結(jié)合的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于基礎題.8、D【解析】

根據(jù),利用向量數(shù)量積的定義和運算律即可求得結(jié)果.【詳解】由題意得:,本題正確選項:【點睛】本題考查向量模長的求解,關(guān)鍵是能夠通過平方運算將問題轉(zhuǎn)化為平面向量數(shù)量積的求解問題,屬于??碱}型.9、B【解析】試題分析:圓化為標準方程為,所以圓心為(-1,1),半徑,弦心距為.因為圓截直線所得弦長為4,所以.故選B.10、C【解析】

因為,所以,則因為數(shù)列的各項均為正數(shù),所以所以,故選C二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

首先利用數(shù)列的關(guān)系式的變換求出數(shù)列為等差數(shù)列,進一步求出數(shù)列的通項公式,最后求出數(shù)列的和.【詳解】解:數(shù)列中,,當時,,整理得,即,∴數(shù)列是以為首項,6為公差的等差數(shù)列,故,所以,故答案為:.【點睛】本題主要考查定義法判斷等差數(shù)列,考查等差數(shù)列的前項和,考查運算能力和推理能力,屬于中檔題.12、②【解析】

③①可由課本推論知正確;②可舉反例;④可進行證明.【詳解】命題①平行于同一直線的兩條直線互相平行,由課本推論知是正確的;②垂直于同一平面的兩個平面互相平行,是錯誤的,例如正方體的上底面,前面和右側(cè)面,是互相垂直的關(guān)系;③根據(jù)課本推論知結(jié)論正確;④若三棱錐中,,,則點在平面內(nèi)的射影是的垂心這一結(jié)論是正確的;作出B在底面的射影O,連結(jié)AO,DO,則,同理,,進而得到O為三角形的垂心.

故答案為②【點睛】這個題目考查了命題真假的判斷,一般這類題目可以通過課本的性質(zhì)或者結(jié)論進行判斷;也可以通過舉反例來解決這個問題.13、【解析】

將所求的式子變形為,展開后可利用基本不等式求得最小值.【詳解】解:,,,,當且僅當時取等號.故答案為1.【點睛】本題考查了“乘1法”和基本不等式,屬于基礎題.由于已知條件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式來求得最小值了.14、44.5【解析】

通過誘導公式,得出,依此類推,得出原式的值.【詳解】,,同理,,故答案為44.5.【點睛】本題主要考查了三角函數(shù)中的誘導公式的運用,得出是解題的關(guān)鍵,屬于基礎題.15、【解析】

由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點睛】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結(jié)合誘導公式求解.16、1【解析】

由等差數(shù)列的性質(zhì)可得a7+a9+a11=3a9,而S17=17a9,故本題可解.【詳解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案為:1.【點睛】本題考查了等差數(shù)列的前n項和公式與等差數(shù)列性質(zhì)的綜合應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)條件求出的正余弦值,利用兩角和的余弦公式計算即可(2)利用向量的數(shù)量積坐標公式運算可得,由求出即可求解.【詳解】(1),為銳角,則,點的橫坐標為,即有,,則;(2)由題意可知,,,則,即,由,可得,則,即有..【點睛】本題主要考查了單位圓,三角函數(shù)的定義,同角三角函數(shù)之間的關(guān)系,向量數(shù)量積的坐標運算,屬于中檔題.18、(1);(2)【解析】

(1)由兩條直線組成方程組,求得交點坐標;(2)設與直線垂直的直線方程為,代入點的坐標求得的值,可寫出的方程.【詳解】(1)由直線與直線組成方程組,得,解得,所以點的坐標為;(2)設與直線垂直的直線的方程為,又直線過點,所以,解得,直線的方程為.【點睛】本題考查直線方程的求法與應用問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力.19、(1).(2)【解析】

(1)根據(jù)已知的等式,再寫一個關(guān)于等式,利用求通項公式;(2)利用裂項相消法求解,再根據(jù)單調(diào)性以及求解的取值范圍.【詳解】解:(1)當時,,,兩式相減得整理得,即,又,,,則,當時,,所以.(2),則,.又,所以數(shù)列單調(diào)遞增,當時,最小值為,又因為,所以的取值范圍為.【點睛】當,且是等差數(shù)列且,則的前項和可用裂項相消法求解:.20、(1);(2)的最大值為【解析】試題分析:(1)通過同角三角函數(shù)關(guān)系將化簡,再對函數(shù)配方,然后討論對稱軸與區(qū)間的位置關(guān)系,從而求出的最小值;(2)由,則根據(jù)的解析式可知只能在內(nèi)解方程,從而求出的值,即可求出的最大值.試題解析:(1)若,即,則當時,有最小值,;若,即,則當時,有最小值,若,即,則當時,有最小值,所以;(2)若,由所求的解析式知或由或(舍);由(舍)此時,得,所以時,,此時的最大值為.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論