




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省師范大學附屬中學2025屆數(shù)學高一下期末預測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓:關于直線對稱的圓為圓:,則直線的方程為A. B. C. D.2.在中,角A,B,C所對的邊分別為a,b,c,若,,則的值為()A. B. C. D.3.設,是橢圓的左、右焦點,過的直線交橢圓于A,B兩點,若最大值為5,則橢圓的離心率為()A. B. C. D.4.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應等乙半小時,而乙還有其他安排,若他早到則不需等待,則甲、乙兩人能見面的概率()A. B. C. D.5.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.6.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.7.不等式的解集是()A. B. C. D.8.設變量想x、y滿足約束條件為則目標函數(shù)的最大值為()A.0 B.-3 C.18 D.219.下列關于極限的計算,錯誤的是()A.B.C.D.已知,則10.已知,且,把底數(shù)相同的指數(shù)函數(shù)與對數(shù)函數(shù)圖象的公共點稱為(或)的“亮點”.當時,在下列四點,,,中,能成為的“亮點”有()A.0個 B.1個 C.2個 D.3個二、填空題:本大題共6小題,每小題5分,共30分。11.若、分別是方程的兩個根,則______.12.已知點在直線上,則的最小值為__________.13.如圖,貨輪在海上以的速度沿著方位角(從指北方向順時針轉到目標方向線的水平角)為150°的方向航行.為了確定船位,在點B觀察燈塔A的方位角是120°,航行半小時后到達C點,觀察燈塔A的方位角是75°,則貨輪到達C點時與燈塔A的距離為______nmile14.直線的傾斜角為______.15.如圖中,,,,M為AB邊上的動點,,D為垂足,則的最小值為______;16.求的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內角,,的對邊分別為,,,設.(1)求;(2)若,求.18.有一款手機,每部購買費用是5000元,每年網(wǎng)絡費和電話費共需1000元;每部手機第一年不需維修,第二年維修費用為100元,以后每一年的維修費用均比上一年增加100元.設該款手機每部使用年共需維修費用元,總費用元.(總費用購買費用網(wǎng)絡費和電話費維修費用)(1)求函數(shù)、的表達式:(2)這款手機每部使用多少年時,它的年平均費用最少?19.已知函數(shù).(1)求的最小正周期;(2)當時,求的值域.20.如圖,在三棱柱中,側棱垂直于底面,,,分別是,的中點.(1)求證:平面平面;(2)求證:平面.21.在四棱錐中,,.(1)若點為的中點,求證:平面;(2)當平面平面時,求二面角的余弦值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)對稱性,求得,求得圓的圓心坐標,再根據(jù)直線l為線段C1C2的垂直平分線,求得直線的斜率,即可求解,得到答案.【詳解】由題意,圓的方程,可化為,根據(jù)對稱性,可得:,解得:或(舍去,此時半徑的平方小于0,不符合題意),此時C1(0,0),C2(-1,2),直線C1C2的斜率為:,由圓C1和圓C2關于直線l對稱可知:直線l為線段C1C2的垂直平分線,所以,解得,直線l又經過線段C1C2的中點(,1),所以直線l的方程為:,化簡得:,故選A【點睛】本題主要考查了圓與圓的位置關系的應用,其中解答中熟記兩圓的位置關系,合理應用圓對稱性是解答本題的關鍵,其中著重考查了推理與運算能力,屬于基礎題.2、D【解析】
由正弦定理及余弦定理可得,,然后求解即可.【詳解】解:由可得,則,①又,所以,即,所以②由①②可得:,由余弦定理可得,故選:D.【點睛】本題考查了正弦定理及余弦定理的綜合應用,重點考查了兩角和的正弦公式,屬中檔題.3、A【解析】
,故的最小值為,當且僅當軸時,最小,此時,計算得到答案.【詳解】,最大值為5,故的最小值為,當且僅當軸時,最小,此時,即又因為,可得,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.4、A【解析】設甲到達時刻為,乙到達時刻為,依題意列不等式組為,畫出可行域如下圖陰影部分,故概率為.5、B【解析】由三角形的三邊關系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調遞增,最大值為4,最小值為1,故排除C,單調遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調性和最值;解決本題的關鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉化為“判定函數(shù)的最大值和最小值間的關系”進行處理,充分體現(xiàn)轉化思想的應用.6、D【解析】
為三角形,,平面,
且,則多面體的正視圖中,
必為虛線,排除B,C,
說明右側高于左側,排除A.,故選D.7、A【解析】
分解因式,即可求得.【詳解】進行分解因式可得:,故不等式解集為:故選:A.【點睛】本題考查一元二次不等式的求解,屬基礎知識題.8、C【解析】
畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最大值,且最大值為.故選C.【點睛】本小題主要考查利用線性規(guī)劃求線性目標函數(shù)的最大值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫圖可行域;其次是求得線性目標函數(shù)的基準函數(shù);接著畫出基準函數(shù)對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.9、B【解析】
先計算每個極限,再判斷,如果是數(shù)列和的極限還需先求和,再求極限.【詳解】,A正確;∵,∴,B錯;,C正確;若,需按奇數(shù)項和偶數(shù)項分別求和后再極限,即,D正確.故選:B.【點睛】本題考查數(shù)列的極限,掌握極限運算法則是解題基礎.在求數(shù)列前n項和的極限時,需先求出數(shù)列的前n項和,再對和求極限,不能對每一項求極限再相加.10、C【解析】
利用“亮點”的定義對每一個點逐一分析得解.【詳解】由題得,,由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”.故選C【點睛】本題主要考查指數(shù)和對數(shù)的運算,考查指數(shù)和對數(shù)函數(shù)的圖像和性質,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用韋達定理可求出和的值,然后利用兩角和的正切公式可計算出的值.【詳解】由韋達定理得,,因此,.故答案為:.【點睛】本題考查利用兩角和的正切公式求值,同時也考查了一元二次方程根與系數(shù)的關系,考查計算能力,屬于基礎題.12、5【解析】
由題得表示點到點的距離,再利用點到直線的距離求解.【詳解】由題得表示點到點的距離.又∵點在直線上,∴的最小值等于點到直線的距離,且.【點睛】本題主要考查點到兩點間的距離和點到直線的距離的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.13、【解析】
通過方位角定義,求出,,利用正弦定理即可得到答案.【詳解】根據(jù)題意,可知,,,因此可得,由正弦定理得:,求得,即答案為.【點睛】本題主要考查正弦定理的實際應用,難度不大.14、【解析】
先求得直線的斜率,進而求得直線的傾斜角.【詳解】由于直線的斜率為,故傾斜角為.【點睛】本小題主要考查由直線一般式方程求斜率,考查斜率和傾斜角的對應關系,屬于基礎題.15、【解析】
以為坐標原點建立平面直角坐標系,用坐標表示出的值,然后利用換元法求解出對應的最小值即可.【詳解】如圖所示,設,所以,根據(jù)條件可知:,所以,設,,,所以,所以,所以,所以當時,有最小值,最小值為.故答案為:.【點睛】本題考查利用坐標法以及換元法求解最值,著重考查邏輯推理和運算求解的能力,屬于較難題(1)利用換元法求解最值時注意,換元后新元的取值范圍;(2)三角函數(shù)中的一組“萬能公式”:,.16、44.5【解析】
通過誘導公式,得出,依此類推,得出原式的值.【詳解】,,同理,,故答案為44.5.【點睛】本題主要考查了三角函數(shù)中的誘導公式的運用,得出是解題的關鍵,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由正弦定理得,再利用余弦定理的到.(2)將代入等式,化簡得到答案.【詳解】解:(1)由結合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【點睛】本題考查了正弦定理,余弦定理,和差公式,意在考查學生的計算能力.18、(1),;(2)這款手機使用年時它的年平均費用最少【解析】
(1)第年的維修費用為,根據(jù)等差數(shù)列求和公式可求得;將加上購買費用和年的網(wǎng)絡費和電話費總額即可得到;(2)平均費用,利用基本不等式可求得最小值,根據(jù)取等條件可求得的取值.【詳解】(1)則(2)設每部手機使用年的平均費用為則當,即時,這款手機使用年時它的年平均費用最少【點睛】本題考查構造合適的函數(shù)模型解決實際問題,涉及到函數(shù)最值的求解問題;解決本題中最值問題的關鍵是能夠得到符合基本不等式的形式,利用基本不等式求得和的最小值.19、(1);(2)【解析】
(1)展開兩角差的正弦,再由輔助角公式化簡,利用周期公式求周期;(2)由x的范圍求出相位的范圍,再由正弦函數(shù)的有界性求f(x)的值域.【詳解】(1),;(2),∴,∴,的值域為.【點睛】本題考查兩角和與差的三角函數(shù),三角函數(shù)的周期性,三角函數(shù)值域等問題,考查三角函數(shù)和差公式、二倍角公式及圖像與性質的應用,難度不大,綜合性較強,屬于簡單題.20、(1)證明見解析(2)證明見解析【解析】
(1)根據(jù)線面垂直的判斷定理得到平面;再由面面垂直的判定定理,即可得出結論成立;(2)取的中點,連接,,根據(jù)線面平行的判定定理,即可得出結論成立.【詳解】(1)在三棱柱中,底面,所以.又因為,所以平面;又平面,所以平面平面;(2)取的中點,連接,.因為,,分別是,,的中點,所以,且,.因為,且,所以,且,所以四邊形為平行四邊形,所以,又因為平面,平面,所以平面.【點睛】本題主要考查證明面面垂直,以及證明線面平行,熟記線面垂直、面面垂直的判定定理,以及線面平行的判定定理即可,屬于??碱}型.21、(1)見解析;(2).【解析】
(I)結合平面與平面平行判定,得到平面BEM平行平面PAD,結合平面與平面性質,證明結論.(II)建立空間坐標系,分別計算平面PCD和平面PDB的法向量,結合向量數(shù)量積公式,計算余弦值,即可.【詳解】(Ⅰ)取的中點為,連結,.由已知得,為等邊三角形,.∵,,∴,∴,∴.又∵平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 油務工專業(yè)理論考試題及參考答案
- 專業(yè)攝影測量與遙感習題及答案
- 呼叫中心服務員-初級工考試題及參考答案
- 2025屆山西省部分學校高三4月模擬考試(省二模)生物試題(原卷版+解析版)
- 江蘇省南京市五校聯(lián)盟2024-2025學年高二下學期4月期中地理試題(原卷版+解析版)
- 批發(fā)業(yè)消費者行為分析與研究考核試卷
- 畜禽糞便處理與農業(yè)廢棄物循環(huán)利用考卷考核試卷
- 租賃店鋪的顧客滿意度提升實踐考核試卷
- 聚苯并噻吩改性與加工技術考核試卷
- 聚合纖維的綠色生產與可持續(xù)發(fā)展考核試卷
- 2025陜西漢中漢源電力(集團)限公司招聘56人易考易錯模擬試題(共500題)試卷后附參考答案
- 年產30萬噸生物航煤項目可行性研究報告(僅供參考)
- 南京師范大學自主招生個人陳述范文與撰寫要點
- 鐵粉運輸合同協(xié)議
- 計算機網(wǎng)絡安全知識試題及答案2025年計算機二級考試
- 浙江省A9協(xié)作體2024-2025學年高二下學期4月期中聯(lián)考語文試卷(含答案 )
- 2025年初中學業(yè)水平考試地理模擬卷及答案:圖表解讀與地理學科創(chuàng)新試題
- (四調)武漢市2025屆高中畢業(yè)生四月調研考試 語文試卷(含答案詳解)
- 廣州廣州市天河區(qū)華陽小學-畢業(yè)在即家校共話未來-六下期中家長會【課件】
- 第4單元 亮火蟲(教學設計)-2024-2025學年粵教花城版(2024)音樂一年級下冊
- 公司事故隱患內部報告獎勵制度
評論
0/150
提交評論