




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省洪澤外國(guó)語(yǔ)中學(xué)2024年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或32.在平面直角坐標(biāo)系中,已知四邊形是平行四邊形,,,則()A. B. C. D.3.過(guò)點(diǎn)且與直線垂直的直線方程為()A. B.C. D.4.已知是銳角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限5.將正整數(shù)排列如下:則圖中數(shù)2020出現(xiàn)在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列6.如圖,測(cè)量河對(duì)岸的塔高時(shí),選與塔底B在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn)C與D.現(xiàn)測(cè)得,,,并在點(diǎn)C測(cè)得塔頂A的仰角為,則塔高為()A. B. C.60m D.20m7.2021年某省新高考將實(shí)行“”模式,即語(yǔ)文、數(shù)學(xué)、外語(yǔ)必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共有12種選課模式.某同學(xué)已選了物理,記事件:“他選擇政治和地理”,事件:“他選擇化學(xué)和地理”,則事件與事件()A.是互斥事件,不是對(duì)立事件 B.是對(duì)立事件,不是互斥事件C.既是互斥事件,也是對(duì)立事件 D.既不是互斥事件也不是對(duì)立事件8.設(shè)是公比為的無(wú)窮等比數(shù)列,若的前四項(xiàng)之和等于第五項(xiàng)起以后所有項(xiàng)之和,則數(shù)列是()A.公比為的等比數(shù)列B.公比為的等比數(shù)列C.公比為或的等比數(shù)列D.公比為或的等比數(shù)列9.已知,且,則()A. B. C. D.10.用數(shù)學(xué)歸納法證明的過(guò)程中,設(shè),從遞推到時(shí),不等式左邊為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線和,若,則a等于________.12.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.13.若,則____________.14.已知點(diǎn),,若直線與線段有公共點(diǎn),則實(shí)數(shù)的取值范圍是____________.15.已知數(shù)列的首項(xiàng),,.若對(duì)任意,都有恒成立,則的取值范圍是_____16.把二進(jìn)制數(shù)化為十進(jìn)制數(shù)是:______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知圓C的圓心為(1,1),直線與圓C相切.(1)求圓C的標(biāo)準(zhǔn)方程;(2)若直線過(guò)點(diǎn)(2,3),且被圓C所截得的弦長(zhǎng)為2,求直線的方程.18.在中,角的對(duì)邊分別為,已知,,.(1)求的值;(2)求和的值.19.已知函數(shù).(1)解關(guān)于的不等式;(2)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值.20.已知函數(shù),(1)若,求a的值,并判斷的奇偶性;(2)求不等式的解集.21.在中,角所對(duì)的邊分別為.(1)若,求角的大?。唬?)若是邊上的中線,求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因?yàn)橹本€kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點(diǎn)睛】本題主要考查直線與直線垂直的充要條件,屬于基礎(chǔ)題.對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問(wèn)題以簡(jiǎn)單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1)l1||l2?k12、D【解析】因?yàn)樗倪呅问瞧叫兴倪呅?,所以,所以,故選D.考點(diǎn):1、平面向量的加法運(yùn)算;2、平面向量數(shù)量積的坐標(biāo)運(yùn)算.3、A【解析】
先根據(jù)求出與之垂直直線的斜率,再利用點(diǎn)斜式求得直線方程?!驹斀狻坑煽傻弥本€斜率,根據(jù)兩直線垂直的關(guān)系,求得,再利用點(diǎn)斜式,可求得直線方程為,化簡(jiǎn)得,選A【點(diǎn)睛】當(dāng)直線斜率存在時(shí),直線垂直的斜率關(guān)系為4、C【解析】是銳角,∴,∴是小于的正角5、B【解析】
根據(jù)題意,構(gòu)造數(shù)列,利用數(shù)列求和推出的位置.【詳解】根據(jù)已知,第行有個(gè)數(shù),設(shè)數(shù)列為行數(shù)的數(shù)列,則,即第行有個(gè)數(shù),第行有個(gè)數(shù),……,第行有個(gè)數(shù),所以,第行到第行數(shù)的總個(gè)數(shù),當(dāng)時(shí),數(shù)的總個(gè)數(shù),所以,為時(shí)的數(shù),即行的數(shù)為:,,,,……,所以,為行第列.故選:B.【點(diǎn)睛】本題考查數(shù)列的應(yīng)用,構(gòu)造數(shù)列,利用數(shù)列知識(shí)求解很關(guān)鍵,屬于中檔題.6、D【解析】
由正弦定理確定的長(zhǎng),再求出.【詳解】,由正弦定理得:故選D【點(diǎn)睛】本題是正弦定理的實(shí)際應(yīng)用,關(guān)鍵是利用正弦定理求出,屬于基礎(chǔ)題.7、A【解析】
事件與事件不能同時(shí)發(fā)生,是互斥事件,他還可以選擇化學(xué)和政治,不是對(duì)立事件,得到答案.【詳解】事件與事件不能同時(shí)發(fā)生,是互斥事件他還可以選擇化學(xué)和政治,不是對(duì)立事件故答案選A【點(diǎn)睛】本題考查了互斥事件和對(duì)立事件,意在考查學(xué)生對(duì)于互斥事件和對(duì)立事件的理解.8、B【解析】
根據(jù)題意可得,帶入等比數(shù)列前和即可解決?!驹斀狻扛鶕?jù)題意,若的前四項(xiàng)之和等于第五項(xiàng)起以后所有項(xiàng)之和,則,又由是公比為的無(wú)窮等比數(shù)列,則,變形可得,則,數(shù)列為的奇數(shù)項(xiàng)組成的數(shù)列,則數(shù)列為公比為的等比數(shù)列;故選:B.【點(diǎn)睛】本題主要考查了利用等比數(shù)列前項(xiàng)和計(jì)算公比,屬于基礎(chǔ)題。9、D【解析】
首先根據(jù),求得,結(jié)合角的范圍,利用平方關(guān)系,求得,利用題的條件,求得,之后將角進(jìn)行配湊,使得,利用正弦的和角公式求得結(jié)果.【詳解】因?yàn)?,所以,因?yàn)?,所?因?yàn)?,,所以,所以,故選D.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)化簡(jiǎn)求值問(wèn)題,涉及到的知識(shí)點(diǎn)有同角三角函數(shù)關(guān)系式,正弦函數(shù)的和角公式,在解題的過(guò)程中,注意時(shí)刻關(guān)注角的范圍.10、C【解析】
比較與時(shí)不等式左邊的項(xiàng),即可得到結(jié)果【詳解】因此不等式左邊為,選C.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法,考查基本分析判斷能力,屬基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)兩直線互相垂直的性質(zhì)可得,從而可求出的值.【詳解】直線和垂直,.解得.故答案為:【點(diǎn)睛】本題考查了直線的一般式,根據(jù)兩直線的位置關(guān)系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關(guān)鍵,屬于基礎(chǔ)題.12、【解析】
代入分式利用同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式化簡(jiǎn)即可.【詳解】.故答案為:2【點(diǎn)睛】本題考查同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.13、【解析】故答案為.14、【解析】
根據(jù)直線方程可確定直線過(guò)定點(diǎn);求出有公共點(diǎn)的臨界狀態(tài)時(shí)的斜率,即和;根據(jù)位置關(guān)系可確定的范圍.【詳解】直線可整理為:直線經(jīng)過(guò)定點(diǎn),又直線的斜率為的取值范圍為:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)直線與線段的交點(diǎn)個(gè)數(shù)求解參數(shù)范圍的問(wèn)題,關(guān)鍵是能夠明確直線經(jīng)過(guò)的定點(diǎn),從而確定臨界狀態(tài)時(shí)的斜率.15、【解析】
代入求得,利用遞推關(guān)系式可得,從而可證得和均為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式可求得通項(xiàng);根據(jù)恒成立不等式可得到不等式組:,解不等式組求得結(jié)果.【詳解】當(dāng)時(shí),,解得:由得:是以為首項(xiàng),為公差的等差數(shù)列;是以為首項(xiàng),為公差的等差數(shù)列,恒成立,解得:即的取值范圍為:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問(wèn)題,關(guān)鍵是能夠根據(jù)遞推關(guān)系式得到奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別成等差數(shù)列,從而分別求得通項(xiàng)公式,進(jìn)而根據(jù)所需的單調(diào)性得到不等關(guān)系.16、51【解析】110011(2)三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】
(1)利用點(diǎn)到直線的距離可得:圓心到直線的距離.根據(jù)直線與圓相切,可得.即可得出圓的標(biāo)準(zhǔn)方程.(2)①當(dāng)直線的斜率存在時(shí),設(shè)直線的方程:,即:,可得圓心到直線的距離,又,可得:.即可得出直線的方程.②當(dāng)?shù)男甭什淮嬖跁r(shí),,代入圓的方程可得:,解得可得弦長(zhǎng),即可驗(yàn)證是否滿足條件.【詳解】(1)圓心到直線的距離.直線與圓相切,.圓的標(biāo)準(zhǔn)方程為:.(2)①當(dāng)直線的斜率存在時(shí),設(shè)直線的方程:,即:,,又,.解得:.直線的方程為:.②當(dāng)?shù)男甭什淮嬖跁r(shí),,代入圓的方程可得:,解得,可得弦長(zhǎng),滿足條件.綜上所述的方程為:或.【點(diǎn)睛】本題考查直線與圓的相切的性質(zhì)、點(diǎn)到直線的距離公式、弦長(zhǎng)公式、分類討論方法,考查推理能力與計(jì)算能力,屬于中檔題.18、(1);(2),【解析】
(1)由,求得,由大邊對(duì)大角可知均為銳角,利用同角三角函數(shù)關(guān)系求得,利用兩角和差正弦公式求得結(jié)果;(2)根據(jù)正弦定理得到的關(guān)系,代入可求得;利用余弦定理求得.【詳解】(1)(2)由正弦定理可得:又,解得:,則由余弦定理可得:【點(diǎn)睛】本題考查解三角形的相關(guān)知識(shí),涉及到同角三角函數(shù)關(guān)系、兩角和差正弦公式、大邊對(duì)大角的關(guān)系、正弦定理和余弦定理的應(yīng)用等知識(shí),屬于??碱}型.19、(1)①當(dāng)時(shí),不等式的解集為;②當(dāng)時(shí),由,則不等式的解集為;③當(dāng)時(shí),由,則不等式的解集為;(2)【解析】
(1)不等式,可化為,分三種情況討論,分別利用一元二次不等式的解法求解即可;(2)不等可化為,根據(jù)1和4是方程的兩根,利用韋達(dá)定理列方程求解即可.【詳解】(1)不等式,可化為:.①當(dāng)時(shí),不等式的解集為;②當(dāng)時(shí),由,則不等式的解集為;③當(dāng)時(shí),由,則不等式的解集為;(2)不等可化為:.由不等式的解集為可知,1和4是方程的兩根.故有,解得.由時(shí)方程為的根為1或4,則實(shí)數(shù)的值為1.【點(diǎn)睛】本題主要考查一元二次不等式的解法以及分類討論思想的應(yīng)用,屬于中檔題..分類討論思想的常見(jiàn)類型
,⑴問(wèn)題中的變量或含有需討論的參數(shù)的,要進(jìn)行分類討論的;
⑵問(wèn)題中的條件是分類給出的;
⑶解題過(guò)程不能統(tǒng)一敘述,必須分類討論的;
⑷涉及幾何問(wèn)題時(shí),由幾何元素的形狀、位置的變化需要分類討論的.20、(1),,是偶函數(shù)(2)或【解析】
(1)先由已知求出,然后結(jié)合利用定義法判斷函數(shù)的奇偶性即可;(2)討論當(dāng)時(shí),當(dāng)時(shí)對(duì)數(shù)函數(shù)的單調(diào)性求解不等式即可.【詳解】解:(1)由題意得,,即,則,,則,函數(shù)的定義域?yàn)?,則,是偶函數(shù);(2)當(dāng)時(shí),在上是減函數(shù),,,解得,所以原不等式的解集為;當(dāng)時(shí),在上是增函數(shù),,,即,所以原不等式的解集為,綜上所述,當(dāng)時(shí),原不等式的解集為,當(dāng)時(shí),原不等式的解集為.【點(diǎn)睛】本題考查了利用定義法判斷函數(shù)的奇偶性,主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求解不等
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)字化金融消費(fèi)者保護(hù)機(jī)制企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力項(xiàng)目商業(yè)計(jì)劃書(shū)
- 親子游樂(lè)度假區(qū)企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力項(xiàng)目商業(yè)計(jì)劃書(shū)
- 債券發(fā)行擔(dān)保服務(wù)行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書(shū)
- 燈具倉(cāng)儲(chǔ)配送企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力項(xiàng)目商業(yè)計(jì)劃書(shū)
- 休閑旅游小鎮(zhèn)行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書(shū)
- 金融科技安全審計(jì)服務(wù)行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書(shū)
- 鄉(xiāng)村露營(yíng)燒烤基地行業(yè)跨境出海項(xiàng)目商業(yè)計(jì)劃書(shū)
- 親子餐廳行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書(shū)
- 精密塑料零件制造行業(yè)深度調(diào)研及發(fā)展項(xiàng)目商業(yè)計(jì)劃書(shū)
- 2025年生物制藥新篇章:創(chuàng)新藥物研發(fā)靶點(diǎn)發(fā)現(xiàn)與驗(yàn)證技術(shù)全景分析報(bào)告
- 2025年中國(guó)經(jīng)濟(jì)信息社福建分公司招聘筆試參考題庫(kù)含答案解析
- 《GIS實(shí)踐教學(xué)》課件
- 中國(guó)糖尿病防治指南(2024版)圖文完整版
- 《糖尿病酮癥酸中毒》課件
- 2023-2024學(xué)年天津市和平區(qū)八年級(jí)(下)期末數(shù)學(xué)試卷(含答案)
- 2021去遠(yuǎn)方上海研學(xué)旅行方案申請(qǐng)及綜合反思表
- 新聞?dòng)浾呗殬I(yè)資格《新聞采編實(shí)務(wù)》考試題庫(kù)(含答案)
- 【MOOC】人工智能:模型與算法-浙江大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 《物理化學(xué)》第二章-熱力學(xué)第一定律課件
- 電力工程監(jiān)理規(guī)劃
- 浙江省2024年中考語(yǔ)文真題試卷(含答案)
評(píng)論
0/150
提交評(píng)論