版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省洪澤外國語中學2024年高一數(shù)學第二學期期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或32.在平面直角坐標系中,已知四邊形是平行四邊形,,,則()A. B. C. D.3.過點且與直線垂直的直線方程為()A. B.C. D.4.已知是銳角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限5.將正整數(shù)排列如下:則圖中數(shù)2020出現(xiàn)在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列6.如圖,測量河對岸的塔高時,選與塔底B在同一水平面內的兩個測點C與D.現(xiàn)測得,,,并在點C測得塔頂A的仰角為,則塔高為()A. B. C.60m D.20m7.2021年某省新高考將實行“”模式,即語文、數(shù)學、外語必選,物理、歷史二選一,政治、地理、化學、生物四選二,共有12種選課模式.某同學已選了物理,記事件:“他選擇政治和地理”,事件:“他選擇化學和地理”,則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件8.設是公比為的無窮等比數(shù)列,若的前四項之和等于第五項起以后所有項之和,則數(shù)列是()A.公比為的等比數(shù)列B.公比為的等比數(shù)列C.公比為或的等比數(shù)列D.公比為或的等比數(shù)列9.已知,且,則()A. B. C. D.10.用數(shù)學歸納法證明的過程中,設,從遞推到時,不等式左邊為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線和,若,則a等于________.12.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.13.若,則____________.14.已知點,,若直線與線段有公共點,則實數(shù)的取值范圍是____________.15.已知數(shù)列的首項,,.若對任意,都有恒成立,則的取值范圍是_____16.把二進制數(shù)化為十進制數(shù)是:______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓C的圓心為(1,1),直線與圓C相切.(1)求圓C的標準方程;(2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.18.在中,角的對邊分別為,已知,,.(1)求的值;(2)求和的值.19.已知函數(shù).(1)解關于的不等式;(2)若關于的不等式的解集為,求實數(shù)的值.20.已知函數(shù),(1)若,求a的值,并判斷的奇偶性;(2)求不等式的解集.21.在中,角所對的邊分別為.(1)若,求角的大??;(2)若是邊上的中線,求證:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因為直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點睛】本題主要考查直線與直線垂直的充要條件,屬于基礎題.對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1)l1||l2?k12、D【解析】因為四邊形是平行四邊形,所以,所以,故選D.考點:1、平面向量的加法運算;2、平面向量數(shù)量積的坐標運算.3、A【解析】
先根據(jù)求出與之垂直直線的斜率,再利用點斜式求得直線方程?!驹斀狻坑煽傻弥本€斜率,根據(jù)兩直線垂直的關系,求得,再利用點斜式,可求得直線方程為,化簡得,選A【點睛】當直線斜率存在時,直線垂直的斜率關系為4、C【解析】是銳角,∴,∴是小于的正角5、B【解析】
根據(jù)題意,構造數(shù)列,利用數(shù)列求和推出的位置.【詳解】根據(jù)已知,第行有個數(shù),設數(shù)列為行數(shù)的數(shù)列,則,即第行有個數(shù),第行有個數(shù),……,第行有個數(shù),所以,第行到第行數(shù)的總個數(shù),當時,數(shù)的總個數(shù),所以,為時的數(shù),即行的數(shù)為:,,,,……,所以,為行第列.故選:B.【點睛】本題考查數(shù)列的應用,構造數(shù)列,利用數(shù)列知識求解很關鍵,屬于中檔題.6、D【解析】
由正弦定理確定的長,再求出.【詳解】,由正弦定理得:故選D【點睛】本題是正弦定理的實際應用,關鍵是利用正弦定理求出,屬于基礎題.7、A【解析】
事件與事件不能同時發(fā)生,是互斥事件,他還可以選擇化學和政治,不是對立事件,得到答案.【詳解】事件與事件不能同時發(fā)生,是互斥事件他還可以選擇化學和政治,不是對立事件故答案選A【點睛】本題考查了互斥事件和對立事件,意在考查學生對于互斥事件和對立事件的理解.8、B【解析】
根據(jù)題意可得,帶入等比數(shù)列前和即可解決?!驹斀狻扛鶕?jù)題意,若的前四項之和等于第五項起以后所有項之和,則,又由是公比為的無窮等比數(shù)列,則,變形可得,則,數(shù)列為的奇數(shù)項組成的數(shù)列,則數(shù)列為公比為的等比數(shù)列;故選:B.【點睛】本題主要考查了利用等比數(shù)列前項和計算公比,屬于基礎題。9、D【解析】
首先根據(jù),求得,結合角的范圍,利用平方關系,求得,利用題的條件,求得,之后將角進行配湊,使得,利用正弦的和角公式求得結果.【詳解】因為,所以,因為,所以.因為,,所以,所以,故選D.【點睛】該題考查的是有關三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關系式,正弦函數(shù)的和角公式,在解題的過程中,注意時刻關注角的范圍.10、C【解析】
比較與時不等式左邊的項,即可得到結果【詳解】因此不等式左邊為,選C.【點睛】本題考查數(shù)學歸納法,考查基本分析判斷能力,屬基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)兩直線互相垂直的性質可得,從而可求出的值.【詳解】直線和垂直,.解得.故答案為:【點睛】本題考查了直線的一般式,根據(jù)兩直線的位置關系求參數(shù)的值,熟記兩直線垂直系數(shù)滿足:是關鍵,屬于基礎題.12、【解析】
代入分式利用同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數(shù)的平方關系、二倍角公式及三角函數(shù)誘導公式,屬于基礎題.13、【解析】故答案為.14、【解析】
根據(jù)直線方程可確定直線過定點;求出有公共點的臨界狀態(tài)時的斜率,即和;根據(jù)位置關系可確定的范圍.【詳解】直線可整理為:直線經過定點,又直線的斜率為的取值范圍為:本題正確結果:【點睛】本題考查根據(jù)直線與線段的交點個數(shù)求解參數(shù)范圍的問題,關鍵是能夠明確直線經過的定點,從而確定臨界狀態(tài)時的斜率.15、【解析】
代入求得,利用遞推關系式可得,從而可證得和均為等差數(shù)列,利用等差數(shù)列通項公式可求得通項;根據(jù)恒成立不等式可得到不等式組:,解不等式組求得結果.【詳解】當時,,解得:由得:是以為首項,為公差的等差數(shù)列;是以為首項,為公差的等差數(shù)列,恒成立,解得:即的取值范圍為:本題正確結果:【點睛】本題考查根據(jù)數(shù)列的單調性求解參數(shù)范圍的問題,關鍵是能夠根據(jù)遞推關系式得到奇數(shù)項和偶數(shù)項分別成等差數(shù)列,從而分別求得通項公式,進而根據(jù)所需的單調性得到不等關系.16、51【解析】110011(2)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】
(1)利用點到直線的距離可得:圓心到直線的距離.根據(jù)直線與圓相切,可得.即可得出圓的標準方程.(2)①當直線的斜率存在時,設直線的方程:,即:,可得圓心到直線的距離,又,可得:.即可得出直線的方程.②當?shù)男甭什淮嬖跁r,,代入圓的方程可得:,解得可得弦長,即可驗證是否滿足條件.【詳解】(1)圓心到直線的距離.直線與圓相切,.圓的標準方程為:.(2)①當直線的斜率存在時,設直線的方程:,即:,,又,.解得:.直線的方程為:.②當?shù)男甭什淮嬖跁r,,代入圓的方程可得:,解得,可得弦長,滿足條件.綜上所述的方程為:或.【點睛】本題考查直線與圓的相切的性質、點到直線的距離公式、弦長公式、分類討論方法,考查推理能力與計算能力,屬于中檔題.18、(1);(2),【解析】
(1)由,求得,由大邊對大角可知均為銳角,利用同角三角函數(shù)關系求得,利用兩角和差正弦公式求得結果;(2)根據(jù)正弦定理得到的關系,代入可求得;利用余弦定理求得.【詳解】(1)(2)由正弦定理可得:又,解得:,則由余弦定理可得:【點睛】本題考查解三角形的相關知識,涉及到同角三角函數(shù)關系、兩角和差正弦公式、大邊對大角的關系、正弦定理和余弦定理的應用等知識,屬于??碱}型.19、(1)①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)【解析】
(1)不等式,可化為,分三種情況討論,分別利用一元二次不等式的解法求解即可;(2)不等可化為,根據(jù)1和4是方程的兩根,利用韋達定理列方程求解即可.【詳解】(1)不等式,可化為:.①當時,不等式的解集為;②當時,由,則不等式的解集為;③當時,由,則不等式的解集為;(2)不等可化為:.由不等式的解集為可知,1和4是方程的兩根.故有,解得.由時方程為的根為1或4,則實數(shù)的值為1.【點睛】本題主要考查一元二次不等式的解法以及分類討論思想的應用,屬于中檔題..分類討論思想的常見類型
,⑴問題中的變量或含有需討論的參數(shù)的,要進行分類討論的;
⑵問題中的條件是分類給出的;
⑶解題過程不能統(tǒng)一敘述,必須分類討論的;
⑷涉及幾何問題時,由幾何元素的形狀、位置的變化需要分類討論的.20、(1),,是偶函數(shù)(2)或【解析】
(1)先由已知求出,然后結合利用定義法判斷函數(shù)的奇偶性即可;(2)討論當時,當時對數(shù)函數(shù)的單調性求解不等式即可.【詳解】解:(1)由題意得,,即,則,,則,函數(shù)的定義域為,則,是偶函數(shù);(2)當時,在上是減函數(shù),,,解得,所以原不等式的解集為;當時,在上是增函數(shù),,,即,所以原不等式的解集為,綜上所述,當時,原不等式的解集為,當時,原不等式的解集為.【點睛】本題考查了利用定義法判斷函數(shù)的奇偶性,主要考查了利用對數(shù)函數(shù)的單調性求解不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (完整版)醫(yī)療器械基礎知識培訓考試試題及答案
- 深圳市房地產買賣合同范本
- 2025年全球及中國來曲唑片行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球醫(yī)用水刀行業(yè)調研及趨勢分析報告
- 2024年度河南省國家保安員資格考試題庫附答案(典型題)
- 小數(shù)除以整數(shù)競賽測試題大全附答案
- 23-24年項目部治理人員安全培訓考試題及答案【典優(yōu)】
- 23年-24年企業(yè)主要負責人安全培訓考試題答案精練
- 2024項目部安全培訓考試題帶下載答案可打印
- 2023年-2024年新員工入職前安全教育培訓試題附參考答案【輕巧奪冠】
- 2023年管理學原理考試題庫附答案
- 【可行性報告】2023年電動自行車相關項目可行性研究報告
- 歐洲食品與飲料行業(yè)數(shù)據(jù)與趨勢
- 放療科室規(guī)章制度(二篇)
- 中高職貫通培養(yǎng)三二分段(中職階段)新能源汽車檢測與維修專業(yè)課程體系
- 浙江省安全員C證考試題庫及答案(推薦)
- 目視講義.的知識
- 洗衣機事業(yè)部精益降本總結及規(guī)劃 -美的集團制造年會
- 房地產公司流動資產管理制度
- 2015-2022年湖南高速鐵路職業(yè)技術學院高職單招語文/數(shù)學/英語筆試參考題庫含答案解析
- 鋁合金門窗設計說明
評論
0/150
提交評論