2023-2024學年山東省微山二中高一數(shù)學第二學期期末達標檢測試題含解析_第1頁
2023-2024學年山東省微山二中高一數(shù)學第二學期期末達標檢測試題含解析_第2頁
2023-2024學年山東省微山二中高一數(shù)學第二學期期末達標檢測試題含解析_第3頁
2023-2024學年山東省微山二中高一數(shù)學第二學期期末達標檢測試題含解析_第4頁
2023-2024學年山東省微山二中高一數(shù)學第二學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山東省微山二中高一數(shù)學第二學期期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在三角形中,點是邊上靠近的三等分點,則()A. B.C. D.2.用輾轉(zhuǎn)相除法,計算56和264的最大公約數(shù)是().A.7 B.8 C.9 D.63.已知A={第一象限角},B={銳角},C={小于90°的角},那么A、B、C關系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C4.我國古代數(shù)學名著九章算術記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形則它的體積為A. B.160 C. D.645.已知,,,則實數(shù)、、的大小關系是()A. B.C. D.6.在銳角三角形中,,,分別為內(nèi)角,,的對邊,已知,,,則的面積為()A. B. C. D.7.直線與直線的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.點、、、在同一個球的球面上,,.若四面體的體積的最大值為,則這個球的表面積為()A. B. C. D.9.展開式中的常數(shù)項為()A.1 B.21 C.31 D.5110.已知等比數(shù)列的前項和為,則下列一定成立的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.若正實數(shù),滿足,則的最小值是________.12.已知等比數(shù)列中,若,,則_____.13.過點(2,-3)且在兩坐標軸上的截距互為相反數(shù)的直線方程為_________________.14.已知呈線性相關的變量,之間的關系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計當為時,的值為______.15.已知正實數(shù)滿足,則的最大值為_______.16.已知a、b為不垂直的異面直線,α是一個平面,則a、b在α上的射影有可能是:①兩條平行直線;②兩條互相垂直的直線;③同一條直線;④一條直線及其外一點.在上面結(jié)論中,正確結(jié)論的編號是________.(寫出所有正確結(jié)論的編號)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,.(1)若為等邊三角形,且是的中點,求.(2)若,,求.18.如圖,已知平面是正三角形,.(1)求證:平面平面;(2)求二面角的正切值.19.已知函數(shù).(I)當時,求不等式的解集;(II)若關于的不等式有且僅有一個整數(shù)解,求正實數(shù)的取值范圍.20.如圖,在三棱柱中,側(cè)面是邊長為2的正方形,點是棱的中點.(1)證明:平面.(2)若三棱錐的體積為4,求點到平面的距離.21.已知是定義域為R的奇函數(shù),當時,.Ⅰ求函數(shù)的單調(diào)遞增區(qū)間;Ⅱ,函數(shù)零點的個數(shù)為,求函數(shù)的解析式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

利用向量的三角形法則以及線性運算法則進行運算,即可得出結(jié)論.【詳解】因為點是邊上靠近的三等分點,所以,所以,故選:A.【點睛】本題考查向量的加?減法以及數(shù)乘運算,需要學生熟練掌握三角形法則和共線定理.2、B【解析】

根據(jù)輾轉(zhuǎn)相除法計算最大公約數(shù).【詳解】因為所以最大公約數(shù)是8,選B.【點睛】本題考查輾轉(zhuǎn)相除法,考查基本求解能力.3、B【解析】

由集合A,B,C,求出B與C的并集,判斷A與C的包含關系,以及A,B,C三者之間的關系即可.【詳解】由題BA,∵A={第一象限角},B={銳角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,則B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故選:B.【點睛】此題考查了集合間的基本關系及運算,熟練掌握象限角,銳角,以及小于90°的角表示的意義是解本題的關鍵,是易錯題4、A【解析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.5、B【解析】

將bc化簡為最簡形式,再利用單調(diào)性比較大小?!驹斀狻恳驗樵趩握{(diào)遞增所以【點睛】本題考查利用的單調(diào)性判斷大小,屬于基礎題。6、D【解析】由結(jié)合題意可得:,故,△ABC為銳角三角形,則,由題意結(jié)合三角函數(shù)的性質(zhì)有:,則:,即:,則,由正弦定理有:,故.本題選擇D選項.點睛:在解決三角形問題中,求解角度值一般應用余弦定理,因為余弦定理在內(nèi)具有單調(diào)性,求解面積常用面積公式,因為公式中既有邊又有角,容易和正弦定理、余弦定理聯(lián)系起來.7、B【解析】

聯(lián)立方程組,求得交點的坐標,即可得到答案.【詳解】由題意,聯(lián)立方程組:,解得,即兩直線的交點坐標為,在第二象限,選B.【點睛】本題主要考查了兩條直線的位置關系的應用,著重考查了運算與求解能力,屬于基礎題.8、D【解析】

根據(jù)幾何體的特征,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,可得與面垂直時體積最大,從而求出球的半徑,即可求出球的表面積.【詳解】根據(jù)題意知,、、三點均在球心的表面上,且,,,則的外接圓半徑為,的面積為,小圓的圓心為,若四面體的體積取最大值,由于底面積不變,高最大時體積最大,所以,當與面垂直時體積最大,最大值為,,設球的半徑為,則在直角中,,即,解得,因此,球的表面積為.故選:D.【點睛】本題考查的知識點是球內(nèi)接多面體,球的表面積,其中分析出何時四面體體積取最大值,是解答的關鍵.9、D【解析】常數(shù)項有三種情況,都是次,或者都是次,或者都是二次,故常數(shù)項為10、C【解析】

設等比數(shù)列的公比為q,利用通項公式與求和公式即可判斷出結(jié)論.【詳解】設等比數(shù)列的公比為q,若,則,則,而與0的大小關系不確定.若,則,則與同號,則與0的大小關系不確定.故選:C【點睛】本題主要考查了等比數(shù)列的通項公式與求和公式及其性質(zhì)、不等式的性質(zhì)與解法,考查了推理能力與計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

將配湊成,由此化簡的表達式,并利用基本不等式求得最小值.【詳解】由得,所以.當且僅當,即時等號成立.故填:.【點睛】本小題主要考查利用基本不等式求和式的最小值,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.12、4【解析】

根據(jù)等比數(shù)列的等積求解即可.【詳解】因為,故.又,故.故答案為:4【點睛】本題主要考查了等比數(shù)列等積性的運用,屬于基礎題.13、【解析】分析:分類討論截距為0和截距不為零兩種情況求解直線方程即可.詳解:當截距為0時,直線的方程為,滿足題意;當截距不為0時,設直線的方程為,把點代入直線方程可得,此時直線方程為.故答案為.點睛:求解直線方程時應該注意以下問題:一是根據(jù)斜率求傾斜角,要注意傾斜角的范圍;二是求直線方程時,若不能斷定直線是否具有斜率時,應對斜率存在與不存在加以討論;三是在用截距式時,應先判斷截距是否為0,若不確定,則需分類討論.14、【解析】由表格得,又線性回歸直線過點,則,即,令,得.點睛:本題考查線性回歸方程的求法和應用;求線性回歸方程是常考的基礎題型,其主要考查線性回歸方程一定經(jīng)過樣本點的中心,一定要注意這一點,如本題中利用線性回歸直線過中心點求出的值.15、【解析】

對所求式子平邊平方,再將代入,從而將問題轉(zhuǎn)化為求【詳解】∵∵,∴,∴,等號成立當且僅當.故答案為:.【點睛】本題考查條件等式下利用基本不等式求最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意等號成立的條件.16、①②④【解析】用正方體ABCD-A1B1C1D1實例說明A1D1與BC1在平面ABCD上的投影互相平行,AB1與BC1在平面ABCD上的投影互相垂直,BC1與DD1在平面ABCD上的投影是一條直線及其外一點.故①②④正確.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先由題意,結(jié)合平面向量基本定理,用表示出,再由向量的數(shù)量積運算,即可得出結(jié)果;(2)先由向量數(shù)量積的運算,求出,再由,結(jié)合題中條件,即可得出結(jié)果.【詳解】解:(1)為等邊三角形,且,又是中點,又(2)由題意:,,,又【點睛】本題主要考查向量數(shù)量積的運算,熟記平面向量基本定理,以及向量數(shù)量積的運算法則即可,屬于??碱}型.18、(1)證明見解析;(2).【解析】

(1)取的中點的中點,證明,由根據(jù)線面垂直判定定理可得,可得平面,結(jié)合面面垂直的判定定理,可得平面平面;

(2)過作,連接BM,可以得到為二面角的平面角,解三角形即可求出二面角的正切值.【詳解】解:(1)取BE的中點F.

AE的中點G,連接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四邊形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG?平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,過G作GM⊥DE,連接BM,則BM⊥DE,則∠BMG為二面角A?DE?B的平面角,設AB=BC=2CD=2,則,在Rt△DCE中,CD=1,CE=2,∴,又,由DE?GM=DG?EG得,所以,故面角的正切值為:.【點睛】本題考查了面面垂直的判定定理及二面角的平面角的作法,重點考查了空間想象能力,屬中檔題.19、(I);(II),或【解析】

(I)直接解不等式得解集;(II)對a分類討論解不等式分析找到a滿足的不等式,解不等式即得解.【詳解】(I)當時,不等式為,不等式的解集為,所以不等式的解集為;(II)原不等式可化為,①當,即時,原不等式的解集為,不滿足題意;②當,即時,,此時,所以;③當,即時,,所以只需,解得;綜上所述,,或.【點睛】本題主要考查一元二次不等式的解法和解集,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1)見解析(2)6【解析】

(1)由平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行可判定平面;(2)由三棱錐的體積為4,可知四棱錐的體積,再由三棱錐的體積公式即可求得高.【詳解】(1)證明:連接,與交于點,連接.因為側(cè)面是平行四邊形,所以點是的中點.因為點是棱的中點,所以.因為平面,平面,所以平面.(2)解:因為三棱錐的體積為4,所以三棱柱的體積為12,則四棱錐的體積為.因為側(cè)面是邊長為2的正方形,所以側(cè)面的面積為.設點到平面的距離為,則,解得.故點到平面的距離為6.【點睛】本題考查直線平行平面的判定和用三棱錐體積公式求點到平面的距離.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論