版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東省藍精靈中學高一下數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是兩條不重合的直線,為兩個不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則2.已知點,點滿足線性約束條件O為坐標原點,那么的最小值是A. B. C. D.3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的體積為()A.54 B. C.90 D.814.在直三棱柱中,底面為直角三角形,,,是上一動點,則的最小值是()A. B. C. D.5.等差數(shù)列前項和為,滿足,則下列結論中正確的是()A.是中的最大值 B.是中的最小值C. D.6.若實數(shù)滿足約束條件則的最大值與最小值之和為()A. B. C. D.7.將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側面積為()A. B. C. D.8.已知函數(shù)與的圖象上存在關于軸對稱的點,則實數(shù)的取值范圍是().A. B. C. D.9.已知函數(shù),則下列說法正確的是()A.圖像的對稱中心是B.在定義域內(nèi)是增函數(shù)C.是奇函數(shù)D.圖像的對稱軸是10.數(shù)列的通項,其前項和為,則為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程在區(qū)間上的解為___________.12.在數(shù)列an中,a1=2,a13.若,則________.14.經(jīng)過點且在x軸上的截距等于在y軸上的截距的直線方程是________.15.我國高鐵發(fā)展迅速,技術先進.經(jīng)統(tǒng)計,在經(jīng)停某站的高鐵列車中,有10個車次的正點率為0.97,有20個車次的正點率為0.98,有10個車次的正點率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點率的估計值為___________.16.設函數(shù)f(x)是定義在R上的偶函數(shù),且對稱軸為x=1,已知當x∈[0,1]時,f(x)=121-x,則有下列結論:①2是函數(shù)fx的周期;②函數(shù)fx在1,2上遞減,在2,3上遞增;③函數(shù)fx三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)求的值;(2)求的值.18.已知等比數(shù)列{an}的前n項和為Sn,S3=,S6=.(1)求數(shù)列{an}的通項公式an;(2)令bn=6n-61+log2an,求數(shù)列{bn}的前n項和Tn.19.已知邊長為2的等邊,是邊的中點,以為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)得對應,與所在直線交于.(1)任意旋轉(zhuǎn)角,判斷是否是定值.若是,求此定值;若不是,說明理由.(2)求的最小值.20.已知是遞增的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)為各項非零的等差數(shù)列,其前n項和為,已知,求數(shù)列的前n項和.21.在中,角A,B,C所對的邊分別為a,b,c.已知,,.(1)求:(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
采用逐一驗證法,結合線面以及線線之間的位置關系,可得結果.【詳解】若,是異面直線,與也可平行,故A錯若//,,也可以在內(nèi),故B錯若也可以在內(nèi),故C錯若//,則,故D對故選:D【點睛】本題主要考查線面以及線線之間的位置關系,屬基礎題.2、D【解析】
點滿足線性約束條件∵令目標函數(shù)畫出可行域如圖所示,聯(lián)立方程解得在點處取得最小值:故選D【點睛】此題主要考查簡單的線性規(guī)劃問題以及向量的內(nèi)積的問題,解決此題的關鍵是能夠找出目標函數(shù).3、A【解析】
由已知中的三視圖可得:該幾何體是一個以正方形為底面的斜四棱柱,進而得到答案.【詳解】由三視圖可知,該多面體是一個以正方形為底面的斜四棱柱,四棱柱的底面是邊長為3的正方形,四棱柱的高為6,則該多面體的體積為.故選:A.【點睛】本題考查三視圖知識及幾何體體積的計算,根據(jù)三視圖判斷幾何體的形狀,再由幾何體體積公式求解,屬于簡單題.4、B【解析】
連,沿將展開與在同一個平面內(nèi),不難看出的最小值是的連線,由余弦定理即可求解.【詳解】解:連,沿將展開與在同一個平面內(nèi),如圖所示,
連,則的長度就是所求的最小值.
,可得
又,
,
在中,由余弦定理可求得,故選B.【點睛】本題考查棱柱的結構特征,余弦定理的應用,是中檔題.5、D【解析】本題考查等差數(shù)列的前n項和公式,等差數(shù)列的性質(zhì),二次函數(shù)的性質(zhì).設公差為則由等差數(shù)列前n項和公式知:是的二次函數(shù);又知對應二次函數(shù)圖像的對稱軸為于是對應二次函數(shù)為無法確定所以根據(jù)條件無法確定有沒有最值;但是根據(jù)二次函數(shù)圖像的對稱性,必有即故選D6、A【解析】
首先根據(jù)不等式組畫出對應的可行域,再分別計算出頂點的坐標,帶入目標函數(shù)求出相應的值,即可找到最大值和最小值.【詳解】不等式組對應的可行域如圖所示:,.,.,,.,,.故選:A【點睛】本題主要考查線性規(guī)劃,根據(jù)不等式組畫出可行域為解題的關鍵,屬于簡單題.7、C【解析】
試題分析:將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到的幾何體為底面為半徑為的圓、高為1的圓柱,其側面展開圖為長為,寬為1,所以所得幾何體的側面積為.故選C.8、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關于x軸對稱的點,則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,故當x=1時,g(x)取最小值﹣2,當x=2時,函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點睛:圖像上存在關于軸對稱的點,即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉(zhuǎn)化為方程有解求參的問題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點即可;這是解決方程有解,圖像有交點,函數(shù)有零點的常見方法。9、A【解析】
根據(jù)正切函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】.,由得,,的對稱中心為,,故正確;.在定義域內(nèi)不是增函數(shù),故錯誤;.為非奇非偶函數(shù),故錯誤;.的圖象不是軸對稱圖形,故錯誤.故選.【點睛】本題考查了正切函數(shù)的圖象與性質(zhì),考查了整體思想,意在考查學生對這些知識的理解掌握水平,屬基礎題.10、A【解析】分析:利用二倍角的余弦公式化簡得,根據(jù)周期公式求出周期為,從而可得結果.詳解:首先對進行化簡得,又由關于的取值表:123456可得的周期為,則可得,設,則,故選A.點睛:本題考查二倍角的余弦公式、三角函數(shù)的周期性以及等差數(shù)列的求和公式,意在考查靈活運用所學知識解決問題的能力以及計算能力,求求解過程要細心,注意避免計算錯誤.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:化簡得:,所以,解得或(舍去),又,所以.【考點】二倍角公式及三角函數(shù)求值【名師點睛】已知三角函數(shù)值求角,基本思路是通過化簡,得到角的某種三角函數(shù)值,結合角的范圍求解.本題難度不大,能較好地考查考生的邏輯推理能力、基本計算能力等.12、2+【解析】
因為a1∴a∴=(=2+ln13、【解析】
先求,再代入求值得解.【詳解】由題得所以.故答案為【點睛】本題主要考查共軛復數(shù)和復數(shù)的模的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.14、或【解析】
當直線不過原點時,設直線的方程為,把點代入求得的值,即可求得直線方程,當直線過原點時,直線的方程為,綜合可得答案.【詳解】當直線不過原點時,設直線的方程為,把點代入可得:,即此時直線的方程為:當直線過原點時,直線的方程為,即綜上可得:滿足條件的直線方程為:或故答案為:或【點睛】過原點的直線橫縱截距都為0,在解題的時候容易漏掉.15、1.98.【解析】
本題考查通過統(tǒng)計數(shù)據(jù)進行概率的估計,采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點數(shù)約為,其中高鐵個數(shù)為11+21+11=41,所以該站所有高鐵平均正點率約為.【點睛】本題考點為概率統(tǒng)計,滲透了數(shù)據(jù)處理和數(shù)學運算素養(yǎng).側重統(tǒng)計數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計數(shù)據(jù),估算出正點列車數(shù)量與列車總數(shù)的比值.16、①②④【解析】
依據(jù)題意作出函數(shù)f(x)的圖像,通過圖像可以判斷以下結論是否正確?!驹斀狻孔鞒龊瘮?shù)f(x)的圖像,由圖像可知2是函數(shù)fx的周期,函數(shù)fx在1,2上遞減,在2,3上遞增,函數(shù)當x∈3,4時,f(x)=f(x-4)=f(4-x)=故正確的結論有①②④?!军c睛】本題主要考查函數(shù)的圖像與性質(zhì)以及數(shù)形結合思想,意在考查學生的邏輯推理能力。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)要求的值,根據(jù)兩角和的正弦公式,可知還要求得,由于已知,所以,利用同角關系可得;(2)要求,由兩角差的余弦公式我們知要先求得,而這由二倍角公式結合(1)可很容易得到.本題應該是三角函數(shù)最基本的題型,只要應用公式,不需要作三角函數(shù)問題中常見的“角”的變換,“函數(shù)名稱”的變換等技巧,可以算得上是容易題,當然要正確地解題,也必須牢記公式,及計算正確.試題解析:(1)由題意,所以.(2)由(1)得,,所以.【考點】三角函數(shù)的基本關系式,二倍角公式,兩角和與差的正弦、余弦公式.18、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】
(1)根據(jù)等比數(shù)列的通項公式和前項求得.(2)將代入中,得是等差數(shù)列,再求和.【詳解】(1)∴,解得∴(2)∴∴數(shù)列是等差數(shù)列.又∴【點睛】本題考查等比數(shù)列和等差數(shù)列的通項和前項和,屬于基礎題.19、(1)是,0;(2).【解析】
(1)以為坐標原點,所在直線為軸,所在直線為軸建立平面直角坐標系,得出的坐標,計算得出,進而得出;(2)根據(jù)得出點的軌跡是以為直徑的圓,由圓的對稱性得出的最小值.【詳解】(1)以為坐標原點,所在直線為軸,所在直線為軸建立平面直角坐標系則,即∴設,則所以為定值,定值為(2)由(1)知,故在以為直徑的圓上設的中點,則,以為直徑的圓的半徑由圓的對稱性可知,的最小值是.【點睛】本題主要考查了計算向量的數(shù)量積以及圓對稱性的應用,屬于中檔題.20、(1);(2)【解析】
(1){an}是遞增的等比數(shù)列,公比設為q,由等比數(shù)列的中項性質(zhì),結合等比數(shù)列的通項公式解方程可得所求;(2)運用等差數(shù)列的求和公式和等差數(shù)列中項性質(zhì),求得bn=2n+1,再由數(shù)列的錯位相減法求和,化簡可得所求和.【詳解】(1)∵是遞增的等比數(shù)列,∴,,又,∴,是的兩根,∴,,∴,.(2)∵,∴由已
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025學生食堂承包合同書
- 2025餐飲發(fā)服務業(yè)保密協(xié)議合同
- 2025石料運輸合同
- 2025年度青年人才公寓租賃合同關于房屋出租3篇
- 2025年度建筑鋼結構質(zhì)量檢測與安全評估合同3篇
- 二零二五年度新能源汽車企業(yè)職工招聘與產(chǎn)業(yè)鏈整合合同3篇
- 2025年度餐飲連鎖合伙經(jīng)營合同樣本2篇
- 二零二五年度農(nóng)村有機垃圾堆肥處理與清理服務合同2篇
- 二零二五年度餐飲兼職煮飯人員培訓協(xié)議3篇
- 2025年度模特與造型師拍攝服務合同3篇
- 急性化膿性中耳炎病人的護理課件
- 中小學美術教學論
- 臨床醫(yī)學研究生畢業(yè)答辯模板
- 中藥煎煮協(xié)議書
- 軍工單位保密協(xié)議范本
- 南方的耕作制度
- 期末測試卷(試題)-2023-2024學年人教精通版英語五年級上冊
- 2020年護理組織管理體系
- 高二(上學期)期末數(shù)學試卷及答案
- 重癥感染和感染性休克治療新進展
- 涉警網(wǎng)絡負面輿情應對與處置策略
評論
0/150
提交評論