山東省濟(jì)寧地區(qū)(SWZ)重點(diǎn)中學(xué)中考試題猜想數(shù)學(xué)試卷及答案解析_第1頁
山東省濟(jì)寧地區(qū)(SWZ)重點(diǎn)中學(xué)中考試題猜想數(shù)學(xué)試卷及答案解析_第2頁
山東省濟(jì)寧地區(qū)(SWZ)重點(diǎn)中學(xué)中考試題猜想數(shù)學(xué)試卷及答案解析_第3頁
山東省濟(jì)寧地區(qū)(SWZ)重點(diǎn)中學(xué)中考試題猜想數(shù)學(xué)試卷及答案解析_第4頁
山東省濟(jì)寧地區(qū)(SWZ)重點(diǎn)中學(xué)中考試題猜想數(shù)學(xué)試卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省濟(jì)寧地區(qū)(SWZ)重點(diǎn)中學(xué)中考試題猜想數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,是由幾個(gè)大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數(shù)字表示在該位置的小立方塊的個(gè)數(shù),則這個(gè)幾何體的主視圖是()A. B. C. D.2.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣73.下列運(yùn)算正確的是()A.a(chǎn)6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2?a3=a6D.5a+2b=7ab4.的相反數(shù)是()A. B.- C. D.5.如圖,在?ABCD中,∠DAB的平分線交CD于點(diǎn)E,交BC的延長線于點(diǎn)G,∠ABC的平分線交CD于點(diǎn)F,交AD的延長線于點(diǎn)H,AG與BH交于點(diǎn)O,連接BE,下列結(jié)論錯(cuò)誤的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE6.在下列交通標(biāo)志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7.一元二次方程2x2﹣3x+1=0的根的情況是()A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根8.計(jì)算(﹣5)﹣(﹣3)的結(jié)果等于()A.﹣8B.8C.﹣2D.29.如圖所示是由幾個(gè)完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個(gè)幾何體的體積為()A.2 B.3 C.4 D.510.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若一個(gè)多邊形的內(nèi)角和是900o,則這個(gè)多邊形是邊形.12.用半徑為6cm,圓心角為120°的扇形圍成一個(gè)圓錐,則圓錐的底面圓半徑為_______cm.13.函數(shù)中,自變量的取值范圍是______.14.如圖,一根直立于水平地面的木桿AB在燈光下形成影子AC(AC>AB),當(dāng)木桿繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),直至到達(dá)地面時(shí),影子的長度發(fā)生變化.已知AE=5m,在旋轉(zhuǎn)過程中,影長的最大值為5m,最小值3m,且影長最大時(shí),木桿與光線垂直,則路燈EF的高度為_____m.15.已知,那么__.16.如圖,在平面直角坐標(biāo)系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.三、解答題(共8題,共72分)17.(8分)對于某一函數(shù)給出如下定義:若存在實(shí)數(shù)m,當(dāng)其自變量的值為m時(shí),其函數(shù)值等于﹣m,則稱﹣m為這個(gè)函數(shù)的反向值.在函數(shù)存在反向值時(shí),該函數(shù)的最大反向值與最小反向值之差n稱為這個(gè)函數(shù)的反向距離.特別地,當(dāng)函數(shù)只有一個(gè)反向值時(shí),其反向距離n為零.例如,圖中的函數(shù)有4,﹣1兩個(gè)反向值,其反向距離n等于1.(1)分別判斷函數(shù)y=﹣x+1,y=,y=x2有沒有反向值?如果有,直接寫出其反向距離;(2)對于函數(shù)y=x2﹣b2x,①若其反向距離為零,求b的值;②若﹣1≤b≤3,求其反向距離n的取值范圍;(3)若函數(shù)y=請直接寫出這個(gè)函數(shù)的反向距離的所有可能值,并寫出相應(yīng)m的取值范圍.18.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=x2+mx+n經(jīng)過點(diǎn)A(3,0)、B(0,-3),點(diǎn)P是直線AB上的動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交拋物線于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為t.分別求出直線AB和這條拋物線的解析式.若點(diǎn)P在第四象限,連接AM、BM,當(dāng)線段PM最長時(shí),求△ABM的面積.是否存在這樣的點(diǎn)P,使得以點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.19.(8分)某校詩詞知識競賽培訓(xùn)活動(dòng)中,在相同條件下對甲、乙兩名學(xué)生進(jìn)行了10次測驗(yàn),他們的10次成績?nèi)缦拢▎挝唬悍郑赫?、分析過程如下,請補(bǔ)充完整.(1)按如下分?jǐn)?shù)段整理、描述這兩組數(shù)據(jù):成績x學(xué)生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:學(xué)生極差平均數(shù)中位數(shù)眾數(shù)方差甲______83.7______8613.21乙2483.782______46.21(3)若從甲、乙兩人中選擇一人參加知識競賽,你會(huì)選______(填“甲”或“乙),理由為______.20.(8分)定義:如果把一條拋物線繞它的頂點(diǎn)旋轉(zhuǎn)180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達(dá)式;(2)若拋物線y=x2﹣2x+c的頂點(diǎn)為D,與y軸交于點(diǎn)C,其“孿生拋物線”與y軸交于點(diǎn)C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點(diǎn)C,與x軸正半軸的交點(diǎn)為A,那么是否在其“孿生拋物線”上存在點(diǎn)P,在y軸上存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.21.(8分)“六一”期間,小張購述100只兩種型號的文具進(jìn)行銷售,其中A種型號的文具進(jìn)價(jià)為10元/只,售價(jià)為12元,B種型號的文具進(jìn)價(jià)為15元1只,售價(jià)為23元/只.(1)小張如何進(jìn)貨,使進(jìn)貨款恰好為1300元?(2)如果購進(jìn)A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?22.(10分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點(diǎn)F,點(diǎn)E在AB的延長線上,射線EM經(jīng)過點(diǎn)C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號).23.(12分)平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點(diǎn)C,與x軸正半軸相交于點(diǎn)A,OA=OC,與x軸的另一個(gè)交點(diǎn)為B,對稱軸是直線x=1,頂點(diǎn)為P.(1)求這條拋物線的表達(dá)式和頂點(diǎn)P的坐標(biāo);(2)拋物線的對稱軸與x軸相交于點(diǎn)M,求∠PMC的正切值;(3)點(diǎn)Q在y軸上,且△BCQ與△CMP相似,求點(diǎn)Q的坐標(biāo).24.“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計(jì)圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎(jiǎng),并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎(jiǎng)代表發(fā)言,試求恰好選中1男1女的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

由俯視圖知該幾何體共2列,其中第1列前一排1個(gè)正方形、后1排2個(gè)正方形,第2列只有前排2個(gè)正方形,據(jù)此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個(gè)正方形、后1排2個(gè)正方形,第2列只有前排2個(gè)正方形,所以其主視圖為:故選C.【點(diǎn)睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.2、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.3、B【解析】

A選項(xiàng):利用同底數(shù)冪的除法法則,底數(shù)不變,只把指數(shù)相減即可;

B選項(xiàng):利用平方差公式,應(yīng)先把2a看成一個(gè)整體,應(yīng)等于(2a)2-b2而不是2a2-b2,故本選項(xiàng)錯(cuò)誤;

C選項(xiàng):先把(-a)2化為a2,然后利用同底數(shù)冪的乘法法則,底數(shù)不變,只把指數(shù)相加,即可得到;

D選項(xiàng):兩項(xiàng)不是同類項(xiàng),故不能進(jìn)行合并.【詳解】A選項(xiàng):a6÷a2=a4,故本選項(xiàng)錯(cuò)誤;

B選項(xiàng):(2a+b)(2a-b)=4a2-b2,故本選項(xiàng)正確;

C選項(xiàng):(-a)2?a3=a5,故本選項(xiàng)錯(cuò)誤;

D選項(xiàng):5a與2b不是同類項(xiàng),不能合并,故本選項(xiàng)錯(cuò)誤;

故選:B.【點(diǎn)睛】考查學(xué)生同底數(shù)冪的乘除法法則的運(yùn)用以及對平方差公式的掌握,同時(shí)要求學(xué)生對同類項(xiàng)進(jìn)行正確的判斷.4、C【解析】

根據(jù)只有符號不同的兩個(gè)數(shù)互為相反數(shù)進(jìn)行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點(diǎn)睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.5、D【解析】解:∵四邊形ABCD是平行四邊形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.同理可證BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正確.∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正確.∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.同理可證EC=CG.∵DH=CG,∴DF=CE,故B正確.無法證明AE=AB,故選D.6、C【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義進(jìn)行分析即可.【詳解】A、不是軸對稱圖形,也不是中心對稱圖形.故此選項(xiàng)錯(cuò)誤;B、不是軸對稱圖形,也不是中心對稱圖形.故此選項(xiàng)錯(cuò)誤;C、是軸對稱圖形,也是中心對稱圖形.故此選項(xiàng)正確;D、是軸對稱圖形,但不是中心對稱圖形.故此選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】考點(diǎn):1、中心對稱圖形;2、軸對稱圖形7、B【解析】試題分析:對于一元二次方程ax2+bx+c=0(a≠0),當(dāng)△=8、C【解析】分析:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù).依此計(jì)算即可求解.詳解:(-5)-(-3)=-1.故選:C.點(diǎn)睛:考查了有理數(shù)的減法,方法指引:①在進(jìn)行減法運(yùn)算時(shí),首先弄清減數(shù)的符號;②將有理數(shù)轉(zhuǎn)化為加法時(shí),要同時(shí)改變兩個(gè)符號:一是運(yùn)算符號(減號變加號);二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù)).9、C【解析】

根據(jù)左視圖發(fā)現(xiàn)最右上角共有2個(gè)小立方體,綜合以上,可以發(fā)現(xiàn)一共有4個(gè)立方體,主視圖和左視圖都是上下兩行,所以這個(gè)幾何體共由上下兩層小正方體組成,俯視圖有3個(gè)小正方形,所以下面一層共有3個(gè)小正方體,結(jié)合主視圖和左視圖的形狀可知上面一層只有最左邊有個(gè)小正方體,故這個(gè)幾何體由4個(gè)小正方體組成,其體積是4.故選C.【點(diǎn)睛】錯(cuò)因分析

容易題,失分原因:未掌握通過三視圖還原幾何體的方法.10、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯(cuò)誤;y=–2x2–2的對稱軸為x=0,C錯(cuò)誤;y=2(x–2)2的對稱軸為x=2,D錯(cuò)誤.故選A.1.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、七【解析】

根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設(shè)這個(gè)多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點(diǎn)睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關(guān)鍵.12、1.【解析】

解:設(shè)圓錐的底面圓半徑為r,根據(jù)題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【點(diǎn)睛】本題考查圓錐的計(jì)算,掌握公式正確計(jì)算是解題關(guān)鍵.13、【解析】

根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【點(diǎn)睛】本題主要考查自變量得取值范圍的知識點(diǎn),當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為2.14、7.5【解析】試題解析:當(dāng)旋轉(zhuǎn)到達(dá)地面時(shí),為最短影長,等于AB,∵最小值3m,∴AB=3m,∵影長最大時(shí),木桿與光線垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴∵AE=5m,∴解得:EF=7.5m.故答案為7.5.點(diǎn)睛:相似三角形的性質(zhì):相似三角形的對應(yīng)邊成比例.15、【解析】

根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【點(diǎn)睛】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個(gè)未知數(shù)得出的值進(jìn)而求解是解題關(guān)鍵.16、先向右平移2個(gè)單位再向下平移2個(gè)單位;4【解析】.平移后頂點(diǎn)坐標(biāo)是(2,-2),利用割補(bǔ)法,把x軸上方陰影部分補(bǔ)到下方,可以得到矩形面積,面積是.三、解答題(共8題,共72分)17、(1)y=?有反向值,反向距離為2;y=x2有反向值,反向距離是1;(2)①b=±1;②0≤n≤8;(3)當(dāng)m>2或m≤﹣2時(shí),n=2,當(dāng)﹣2<m≤2時(shí),n=2.【解析】

(1)根據(jù)題目中的新定義可以分別計(jì)算出各個(gè)函數(shù)是否有方向值,有反向值的可以求出相應(yīng)的反向距離;(2)①根據(jù)題意可以求得相應(yīng)的b的值;②根據(jù)題意和b的取值范圍可以求得相應(yīng)的n的取值范圍;(3)根據(jù)題目中的函數(shù)解析式和題意可以解答本題.【詳解】(1)由題意可得,當(dāng)﹣m=﹣m+1時(shí),該方程無解,故函數(shù)y=﹣x+1沒有反向值,當(dāng)﹣m=時(shí),m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距離為2,當(dāng)﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距離是1;(2)①令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∵反向距離為零,∴|b2﹣1﹣0|=0,解得,b=±1;②令﹣m=m2﹣b2m,解得,m=0或m=b2﹣1,∴n=|b2﹣1﹣0|=|b2﹣1|,∵﹣1≤b≤3,∴0≤n≤8;(3)∵y=,∴當(dāng)x≥m時(shí),﹣m=m2﹣3m,得m=0或m=2,∴n=2﹣0=2,∴m>2或m≤﹣2;當(dāng)x<m時(shí),﹣m=﹣m2﹣3m,解得,m=0或m=﹣2,∴n=0﹣(﹣2)=2,∴﹣2<m≤2,由上可得,當(dāng)m>2或m≤﹣2時(shí),n=2,當(dāng)﹣2<m≤2時(shí),n=2.【點(diǎn)睛】本題是一道二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題目中的新定義,找出所求問題需要的條件,利用新定義解答相關(guān)問題.18、(1)拋物線的解析式是.直線AB的解析式是.(2).(3)P點(diǎn)的橫坐標(biāo)是或.【解析】

(1)分別利用待定系數(shù)法求兩函數(shù)的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關(guān)于m、n的兩個(gè)方程組,解方程組即可;(2)設(shè)點(diǎn)P的坐標(biāo)是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點(diǎn)的縱坐標(biāo)減去M的縱坐標(biāo)得到PM的長,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據(jù)二次函數(shù)的最值得到當(dāng)t=﹣=時(shí),PM最長為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計(jì)算即可;(3)由PM∥OB,根據(jù)平行四邊形的判定得到當(dāng)PM=OB時(shí),點(diǎn)P、M、B、O為頂點(diǎn)的四邊形為平行四邊形,然后討論:當(dāng)P在第四象限:PM=OB=3,PM最長時(shí)只有,所以不可能;當(dāng)P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;當(dāng)P在第三象限:PM=OB=3,t2﹣3t=3,分別解一元二次方程即可得到滿足條件的t的值.【詳解】解:(1)把A(3,0)B(0,-3)代入,得解得所以拋物線的解析式是.設(shè)直線AB的解析式是,把A(3,0)B(0,)代入,得解得所以直線AB的解析式是.(2)設(shè)點(diǎn)P的坐標(biāo)是(),則M(,),因?yàn)樵诘谒南笙?,所以PM=,當(dāng)PM最長時(shí),此時(shí)==.(3)若存在,則可能是:①P在第四象限:平行四邊形OBMP,PM=OB=3,PM最長時(shí),所以不可能.②P在第一象限平行四邊形OBPM:PM=OB=3,,解得,(舍去),所以P點(diǎn)的橫坐標(biāo)是.③P在第三象限平行四邊形OBPM:PM=OB=3,,解得(舍去),①,所以P點(diǎn)的橫坐標(biāo)是.所以P點(diǎn)的橫坐標(biāo)是或.19、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由見解析【解析】

(1)根據(jù)折線統(tǒng)計(jì)圖數(shù)字進(jìn)行填表即可;(2)根據(jù)稽查,中位數(shù),眾數(shù)的計(jì)算方法,求得甲成績的極差,中位數(shù),乙成績的極差,眾數(shù)即可;(3)可分別從平均數(shù)、方差、極差三方面進(jìn)行比較.【詳解】(1)由圖可知:甲的成績?yōu)椋?5,84,89,82,86,1,86,83,85,86,∴70?x?74無,共0個(gè);75?x?79之間有75,共1個(gè);80?x?84之間有84,82,1,83,共4個(gè);85?x?89之間有89,86,86,85,86,共5個(gè);90?x?94之間和95?x?100無,共0個(gè).故答案為0;1;4;5;0;0;(2)由圖可知:甲的最高分為89分,最低分為75分,極差為89?75=14分;∵甲的成績?yōu)閺牡偷礁吲帕袨椋?5,1,82,83,84,85,86,86,86,89,∴中位數(shù)為(84+85)=84.5;∵乙的成績?yōu)閺牡偷礁吲帕袨椋?2,76,1,1,1,83,87,89,91,96,1出現(xiàn)3次,乙成績的眾數(shù)為1.故答案為14;84.5;1;(3)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定;兩人的平均數(shù)相同且甲的極差小于乙,說明甲成績變化范圍?。颍阂遥碛桑涸?0≤x≤100的分?jǐn)?shù)段中,乙的次數(shù)大于甲.(答案不唯一,理由須支撐推斷結(jié)論)故答案為:甲,兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定.【點(diǎn)睛】此題考查折線統(tǒng)計(jì)圖,統(tǒng)計(jì)表,平均數(shù),中位數(shù),眾數(shù),方差,極差,解題關(guān)鍵在于掌握運(yùn)算法則以及會(huì)用這些知識來評價(jià)這組數(shù)據(jù).20、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】

(1)當(dāng)拋物線繞其頂點(diǎn)旋轉(zhuǎn)180°后,拋物線的頂點(diǎn)坐標(biāo)不變,只是開口方向相反,則可根據(jù)頂點(diǎn)式寫出旋轉(zhuǎn)后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點(diǎn)坐標(biāo)C、C′,由點(diǎn)的坐標(biāo)可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當(dāng)AC為對角線時(shí),由中點(diǎn)坐標(biāo)可知點(diǎn)P不存在,當(dāng)AC為邊時(shí),分兩種情況可求得點(diǎn)P的坐標(biāo).【詳解】(1)拋物線y=x2-2x化為頂點(diǎn)式為y=(x-1)2-1,頂點(diǎn)坐標(biāo)為(1,-1),由于拋物線y=x2-2x繞其頂點(diǎn)旋轉(zhuǎn)180°后拋物線的頂點(diǎn)坐標(biāo)不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點(diǎn)為D的坐標(biāo)為(1,c-1),與y軸的交點(diǎn)C的坐標(biāo)為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點(diǎn)C’的坐標(biāo)為(0,c-2),∴CC'=c-(c-2)=2,∵點(diǎn)D的橫坐標(biāo)為1,∴∠CDC'=90°,由對稱性質(zhì)可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點(diǎn)C,與x軸正半軸的交點(diǎn)為A,令x=0,y=-3,令y=0時(shí),y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點(diǎn)坐標(biāo)為(,?),設(shè)P(a,-a2+2a-5),∵A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實(shí)數(shù)解,∴此時(shí)滿足條件的點(diǎn)P不存在,若AC為平行四邊形的邊,點(diǎn)P在y軸右側(cè),則AP∥CQ且AP=CQ,∵點(diǎn)C和點(diǎn)Q在y軸上,∴點(diǎn)P的橫坐標(biāo)為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點(diǎn)P在y軸左側(cè),則AQ∥CP且AQ=CP,∴點(diǎn)P的橫坐標(biāo)為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點(diǎn)P1(3,-8),P2(-3,-20),在y軸上存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形為平行四邊形.【點(diǎn)睛】本題是二次函數(shù)綜合題型,主此題主要考查了根據(jù)二次函數(shù)的圖象的變換求拋物線的解析式,解題的關(guān)鍵是求出旋轉(zhuǎn)后拋物線的頂點(diǎn)坐標(biāo)以及確定出點(diǎn)P的位置,注意分情況討論.21、(1)A種文具進(jìn)貨40只,B種文具進(jìn)貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】

(1)設(shè)可以購進(jìn)A種型號的文具x只,則可以購進(jìn)B種型號的文具只,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合A、B兩種文具的進(jìn)價(jià)及總價(jià),即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì),即可解決最值問題.【詳解】(1)設(shè)A種文具進(jìn)貨x只,B種文具進(jìn)貨只,由題意得:,解得:x=40,,答:A種文具進(jìn)貨40只,B種文具進(jìn)貨60只;(2)設(shè)購進(jìn)A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當(dāng)a=48時(shí)W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【點(diǎn)睛】本題主要考查了一次函數(shù)的實(shí)際問題,熟練掌握一次函數(shù)表達(dá)式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關(guān)鍵.22、(1)詳見解析;(2);【解析】

(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;

(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,

∵OF⊥AB,

∴∠AOF=90°,

∴∠A+∠AFO+90°=180°,

∵∠ACE+∠AFO=180°,

∴∠ACE=90°+∠A,

∵OA=OC,

∴∠A=∠ACO,

∴∠ACE=90°+∠ACO=∠ACO+∠OCE,

∴∠OCE=90°,

∴OC⊥CE,

∴EM是⊙O的切線;

(2)∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠ACO+∠BCO=∠BCE+∠BCO=90°,

∴∠ACO=∠BCE,

∵∠A=∠E,

∴∠A=∠ACO=∠BCE=∠E,

∴∠ABC=∠BCO+∠E=2∠A,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論