版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省簡陽市2024年高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量、滿足,且,則為()A. B.6 C.3 D.2.若程序框圖如圖所示,則該程序運(yùn)行后輸出k的值是()A.5 B.6 C.7 D.83.已知數(shù)列的前項(xiàng)和,那么()A.此數(shù)列一定是等差數(shù)列 B.此數(shù)列一定是等比數(shù)列C.此數(shù)列不是等差數(shù)列,就是等比數(shù)列 D.以上說法都不正確4.直線被圓截得的弦長為()A.4 B. C. D.5.平面向量與的夾角為,,,則A. B.12 C.4 D.6.閱讀如圖所示的算法框圖,輸出的結(jié)果S的值為A.8 B.6 C.5 D.47.下列函數(shù)中,既是偶函數(shù),又在上遞增的函數(shù)的個(gè)數(shù)是().①;②;③;④向右平移后得到的函數(shù).A. B. C. D.8.若函數(shù)()的最大值與最小正周期相同,則下列說法正確的是()A.在上是增函數(shù) B.圖象關(guān)于直線對稱C.圖象關(guān)于點(diǎn)對稱 D.當(dāng)時(shí),函數(shù)的值域?yàn)?.在中,角的對邊分別是,已知,則()A. B. C. D.或10.下列說法正確的是()A.若,則 B.若,,則C.若,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.兩圓交于點(diǎn)和,兩圓的圓心都在直線上,則____________;12.在扇形中,如果圓心角所對弧長等于半徑,那么這個(gè)圓心角的弧度數(shù)為______.13.函數(shù)f(x)=log2(x+1)的定義域?yàn)開____.14.已知數(shù)列中,,,,則的值為_____.15.若實(shí)數(shù)滿足,,則__________.16.在公比為q的正項(xiàng)等比數(shù)列{an}中,a3=9,則當(dāng)3a2+a4取得最小值時(shí),=_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于,連接.(1)求證:;(2)點(diǎn)是上一點(diǎn),若平面,則為何值?并說明理由.(3)若,求二面角的余弦值.18.在平面直角坐標(biāo)系中,直線,.(1)直線是否過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由;(2)已知點(diǎn),若直線上存在點(diǎn)滿足條件,求實(shí)數(shù)的取值范圍.19.求過三點(diǎn)的圓的方程,并求這個(gè)圓的半徑和圓心坐標(biāo).20.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).(Ⅰ)證明:BC1//平面A1CD;(Ⅱ)設(shè)AA1=AC=CB=2,AB=2,求三棱錐C一A1DE的體積.21.據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個(gè)如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點(diǎn)為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.(1)試計(jì)算出圖案中球與圓柱的體積比;(2)假設(shè)球半徑.試計(jì)算出圖案中圓錐的體積和表面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
先由可得,即可求得,再對平方處理,進(jìn)而求解【詳解】因?yàn)?所以,則,所以,則,故選:A【點(diǎn)睛】本題考查向量的模,考查向量垂直的數(shù)量積表示,考查運(yùn)算能力2、A【解析】試題分析:第一次循環(huán)運(yùn)算:;第二次:;第三次:;第四次:;第五次:,這時(shí)符合條件輸出,故選A.考點(diǎn):算法初步.3、D【解析】
利用即可求得:,當(dāng)時(shí),或,對賦值2,3,選擇不同的遞推關(guān)系可得數(shù)列:1,3,-3,…,問題得解.【詳解】因?yàn)椋?dāng)時(shí),,解得,當(dāng)時(shí),,整理有,,所以或若時(shí),滿足,時(shí),滿足,可得數(shù)列:1,3,-3,…此數(shù)列既不是等差數(shù)列,也不是等比數(shù)列故選D【點(diǎn)睛】本題主要考查利用與的關(guān)系求,以及等差等比數(shù)列的判定.4、B【解析】
先由圓的一般方程寫出圓心坐標(biāo),再由點(diǎn)到直線的距離公式求出圓心到直線m的距離d,則弦長等于.【詳解】∵,∴,∴圓的圓心坐標(biāo)為,半徑為,又點(diǎn)到直線的距離,∴直線被圓截得的弦長等于.【點(diǎn)睛】本題主要考查圓的弦長公式的求法,常用方法有代數(shù)法和幾何法;屬于基礎(chǔ)題型.5、D【解析】
根據(jù),利用向量數(shù)量積的定義和運(yùn)算律即可求得結(jié)果.【詳解】由題意得:,本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長的求解,關(guān)鍵是能夠通過平方運(yùn)算將問題轉(zhuǎn)化為平面向量數(shù)量積的求解問題,屬于??碱}型.6、B【解析】
判斷框,即當(dāng)執(zhí)行到時(shí)終止循環(huán),輸出.【詳解】初始值,代入循環(huán)體得:,,,輸出,故選A.【點(diǎn)睛】本題由于循環(huán)體執(zhí)行的次數(shù)較少,所以可以通過列舉每次執(zhí)行后的值,直到循環(huán)終止,從而得到的輸出值.7、B【解析】
將①②③④中的函數(shù)解析式化簡,分析各函數(shù)的奇偶性及其在區(qū)間上的單調(diào)性,可得出結(jié)論.【詳解】對于①中的函數(shù),該函數(shù)為偶函數(shù),當(dāng)時(shí),,該函數(shù)在區(qū)間上不單調(diào);對于②中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞減;對于③中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調(diào)遞增;對于④,將函數(shù)向右平移后得到的函數(shù)為,該函數(shù)為奇函數(shù),且當(dāng)時(shí),,則函數(shù)在區(qū)間上不單調(diào).故選:B.【點(diǎn)睛】本題考查三角函數(shù)單調(diào)性與奇偶性的判斷,同時(shí)也考查了三角函數(shù)的相位變換,熟悉正弦、余弦和正切函數(shù)的基本性質(zhì)是判斷的關(guān)鍵,考查推理能力,屬于中等題.8、A【解析】
先由函數(shù)的周期可得,再結(jié)合三角函數(shù)的性質(zhì)及三角函數(shù)值域的求法逐一判斷即可得解.【詳解】解:由函數(shù)()的最大值與最小正周期相同,所以,即,即,對于選項(xiàng)A,令,解得:,即函數(shù)的增區(qū)間為,當(dāng)時(shí),函數(shù)在為增函數(shù),即A正確,對于選項(xiàng)B,令,解得,即函數(shù)的對稱軸方程為:,又無解,則B錯(cuò)誤,對于選項(xiàng)C,令,解得,即函數(shù)的對稱中心為:,又無解,則C錯(cuò)誤,對于選項(xiàng)D,,則,即函數(shù)的值域?yàn)?,即D錯(cuò)誤,綜上可得說法正確的是選項(xiàng)A,故選:A.【點(diǎn)睛】本題考查了三角函數(shù)的性質(zhì),重點(diǎn)考查了三角函數(shù)值域的求法,屬中檔題.9、B【解析】
由已知知,所以B<A=,由正弦定理得,==,所以,故選B考點(diǎn):正弦定理10、D【解析】
利用不等式的性質(zhì)或舉反例的方法來判斷各選項(xiàng)中不等式的正誤.【詳解】對于A選項(xiàng),若且,則,該選項(xiàng)錯(cuò)誤;對于B選項(xiàng),取,,,,則,均滿足,但,B選項(xiàng)錯(cuò)誤;對于C選項(xiàng),取,,則滿足,但,C選項(xiàng)錯(cuò)誤;對于D選項(xiàng),由不等式的性質(zhì)可知該選項(xiàng)正確,故選:D.【點(diǎn)睛】本題考查不等式正誤的判斷,常用不等式的性質(zhì)以及舉反例的方法來進(jìn)行驗(yàn)證,考查推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由圓的性質(zhì)可知,直線與直線垂直,,直線的斜率,,解得.故填:3.【點(diǎn)睛】本題考查了相交圓的幾何性質(zhì),和直線垂直的關(guān)系,考查數(shù)形結(jié)合的思想與計(jì)算能力,屬于基礎(chǔ)題.12、1【解析】
根據(jù)弧長公式求解【詳解】因?yàn)閳A心角所對弧長等于半徑,所以【點(diǎn)睛】本題考查弧長公式,考查基本求解能力,屬基礎(chǔ)題13、{x|x>﹣1}【解析】
利用對數(shù)的真數(shù)大于,即可得解.【詳解】函數(shù)的定義域?yàn)椋?解得:,故答案為:.【點(diǎn)睛】本題主要考查對數(shù)函數(shù)定義域,考查學(xué)生對對數(shù)函數(shù)定義的理解,是基礎(chǔ)題.14、1275【解析】
根據(jù)遞推關(guān)系式可求得,從而利用并項(xiàng)求和的方法將所求的和轉(zhuǎn)化為,利用等差數(shù)列求和公式求得結(jié)果.【詳解】由得:則,即本題正確結(jié)果:【點(diǎn)睛】本題考查并項(xiàng)求和法、等差數(shù)列求和公式的應(yīng)用,關(guān)鍵是能夠利用遞推關(guān)系式得到數(shù)列相鄰兩項(xiàng)之間的關(guān)系,從而采用并項(xiàng)的方式來進(jìn)行求解.15、【解析】
由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點(diǎn)睛】本題考查反正弦函數(shù),解題時(shí)注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.16、【解析】
利用等比數(shù)列的性質(zhì),結(jié)合基本不等式等號成立的條件,求得公比,由此求得的值.【詳解】∵在公比為q的正項(xiàng)等比數(shù)列{an}中,a3=9,根據(jù)等比數(shù)列的性質(zhì)和基本不等式得,當(dāng)且僅當(dāng),即,即q時(shí),3a2+a4取得最小值,∴l(xiāng)og3q=log3.故答案為:【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查基本不等式的運(yùn)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2),理由見詳解;(3).【解析】
(1)通過證明EF平面PBD,即可證明;(2)通過線面平行,將問題轉(zhuǎn)化為線線平行,在平面圖形中根據(jù)線段比例進(jìn)而求解;(3)根據(jù)(1)(2)所得,找到二面角的平面角,然后再進(jìn)行求解.【詳解】(1)證明:因?yàn)樗倪呅蜛BCD為正方形,故DAAE,DC,即折疊后的DP又因?yàn)槠矫鍼EF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即證.(2)連接BD交EF于O,連接OM,作圖如下因?yàn)?/平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分別是正方形ABCD兩邊的中點(diǎn),故可得即為所求.(3)過M作MH垂直于BD,垂足為H,連接OP,作圖如下:由(1)可知:EF平面PBD,因?yàn)镸H平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因?yàn)锽DEF,故即為所求二面角的平面角.設(shè)正方形ABCD的邊長為4,因?yàn)?,故PM=1,故在中,PM=1,EP=2,根據(jù)勾股定理可得ME同理:在中,PM=1,PF=2,根據(jù)勾股定理可得MF=又EF=故在等腰三角形EMF中,因?yàn)镺是EF的中點(diǎn),故MO=.由(1)可知,PD平面PEF,又OP平面PEF,故PDOP,則,故可得,又在中,PE=PF=2,EF=2,O為斜邊EF上的中點(diǎn),故OP=,又因?yàn)镸D=3,OD=故可解得MH=故在中,MH=1,MO=,由勾股定理可得OH=故.故二面角的余弦值為.【點(diǎn)睛】本題考查由線面垂直推證線線垂直,由線面平行得到線線平行,以及二面角的求解,屬綜合中檔題.18、(1)過定點(diǎn),定點(diǎn)坐標(biāo)為;(2)或.【解析】
(1)假設(shè)直線過定點(diǎn),則關(guān)于恒成立,利用即可結(jié)果;(2)直線上存在點(diǎn),求得,故點(diǎn)在以為圓心,2為半徑的圓上,根據(jù)題意,該圓和直線有交點(diǎn),即圓心到直線的距離小于或等于半徑,由此求得實(shí)數(shù)的取值范圍.【詳解】(1)假設(shè)直線過定點(diǎn),則,即關(guān)于恒成立,∴,∴,所以直線過定點(diǎn),定點(diǎn)坐標(biāo)為(2)已知點(diǎn),,設(shè)點(diǎn),則,,∵,∴,∴所以點(diǎn)的軌跡方程為圓,又點(diǎn)在直線:上,所以直線:與圓有公共點(diǎn),設(shè)圓心到直線的距離為,則,解得實(shí)數(shù)的范圍為或.【點(diǎn)睛】本題主要考查直線過定點(diǎn)問題以及直線與圓的位置關(guān)系,屬于中檔題.解答直線與圓的位置關(guān)系的題型,常見思路有兩個(gè):一是考慮圓心到直線的距離與半徑之間的大小關(guān)系;二是直線方程與圓的方程聯(lián)立,考慮運(yùn)用韋達(dá)定理以及判別式來解答.19、(x﹣4)2+(y+3)2=21,圓的半徑為【解析】
設(shè)出圓的一般方程,把代入所設(shè),得到關(guān)于的方程組,求解,即可求得圓的一般方程,化為標(biāo)準(zhǔn)方程,進(jìn)一步求得圓心坐標(biāo)與半徑.【詳解】設(shè)圓的方程為:x2+y2+Dx+Ey+F=0,則,解得D=﹣4,E=3,F(xiàn)=0,∴圓的方程為x2+y2﹣8x+6y=0,化為(x﹣4)2+(y+3)2=21,可得:圓心是(4,﹣3)、半徑r=1.【點(diǎn)睛】本題主要考查圓的方程和性質(zhì),屬于簡單題.求圓的方程常見思路與方法有:①直接設(shè)出動(dòng)點(diǎn)坐標(biāo),根據(jù)題意列出關(guān)于的方程即可;②根據(jù)幾何意義直接找到圓心坐標(biāo)和半徑,寫出方程;③待定系數(shù)法,可以根據(jù)題意設(shè)出圓的標(biāo)準(zhǔn)方程或一般式方程,再根據(jù)所給條件求出參數(shù)即可.20、(Ⅰ)見解析(Ⅱ)【解析】試題分析:(Ⅰ)連接AC1交A1C于點(diǎn)F,則DF為三角形ABC1的中位線,故DF∥BC1.再根據(jù)直線和平面平行的判定定理證得BC1∥平面A1CD.(Ⅱ)由題意可得此直三棱柱的底面ABC為等腰直角三角形,由D為AB的中點(diǎn)可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.進(jìn)而求得S△A1DE的值,再根據(jù)三棱錐C-A1DE的體積為?S△A1DE?CD,運(yùn)算求得結(jié)果試題解析:(1)證明:連結(jié)AC1交A1C于點(diǎn)F,則F為AC1中點(diǎn)又D是AB中點(diǎn),連結(jié)DF,則BC1∥DF.3分因?yàn)镈F?平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因?yàn)锳BC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D為AB的中點(diǎn),所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱錐C﹣A1DE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025技術(shù)工作計(jì)劃例文2
- 2025年度采購工作計(jì)劃范文
- Unit 4 Plants around us 第一課時(shí)(說課稿)-2024-2025學(xué)年人教PEP版(2024)英語三年級上冊
- 2025年學(xué)生會辦公室的個(gè)人工作計(jì)劃
- 新型節(jié)能水泵、風(fēng)機(jī)和壓縮機(jī)相關(guān)行業(yè)投資規(guī)劃報(bào)告
- TOC自動(dòng)在線監(jiān)測儀相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- Unit 4 I have a pen pal Part C(說課稿)-2024-2025學(xué)年人教PEP版英語六年級上冊
- 合結(jié)鋼相關(guān)行業(yè)投資方案
- 全國河大音像版初中信息技術(shù)七年級上冊第一章第二節(jié)《計(jì)算機(jī)中信息的表示與存儲》說課稿
- Unit 2 Face Lesson 2(說課稿)-2024-2025學(xué)年人教新起點(diǎn)版英語一年級上冊
- GB/T 22740-2008地理標(biāo)志產(chǎn)品靈寶蘋果
- 《人力資源情緒管理問題研究開題報(bào)告(含提綱)》
- 哮喘吸入裝置的正確使用方法課件
- 2023年成都東部集團(tuán)有限公司招聘筆試題庫及答案解析
- 角點(diǎn)網(wǎng)格一.角點(diǎn)網(wǎng)格定義
- 聚酯合成反應(yīng)動(dòng)力學(xué)
- 自動(dòng)控制原理全套課件
- 視頻監(jiān)控室值班記錄表
- 歌曲《梁?!泛喿V完整版
- 小學(xué)語文教研組期末考試質(zhì)量分析
- 校園安全存在問題及對策
評論
0/150
提交評論