2023-2024學年廣東省廣州市實驗中學數(shù)學高一下期末教學質量檢測試題含解析_第1頁
2023-2024學年廣東省廣州市實驗中學數(shù)學高一下期末教學質量檢測試題含解析_第2頁
2023-2024學年廣東省廣州市實驗中學數(shù)學高一下期末教學質量檢測試題含解析_第3頁
2023-2024學年廣東省廣州市實驗中學數(shù)學高一下期末教學質量檢測試題含解析_第4頁
2023-2024學年廣東省廣州市實驗中學數(shù)學高一下期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東省廣州市實驗中學數(shù)學高一下期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A.3 B.4 C.5 D.62.已知向量,,則,的夾角為()A. B. C. D.3.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,若當時,的圖象與直線恰有兩個公共點,則的取值范圍為()A. B. C. D.4.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形5.兩數(shù)1,25的等差中項為()A.1 B.13 C.5 D.6.在中,內角所對的邊分別是,若,則角的值為()A. B. C. D.7.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為()A. B. C. D.8.設偶函數(shù)定義在上,其導數(shù)為,當時,,則不等式的解集為()A. B.C. D.9.已知是所在平面內一點,且滿足,則為A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形10.甲、乙、丙三人隨意坐下,乙不坐中間的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則__________.12.為等比數(shù)列,若,則_______.13.已知圓錐的頂點為,母線,所成角的余弦值為,與圓錐底面所成角為45°,若的面積為,則該圓錐的側面積為__________.14.若,則函數(shù)的最小值是_________.15.中,三邊所對的角分別為,若,則角______.16.在ΔABC中,角A,B,C所對的對邊分別為a,b,c,若A=30°,a=7,b=2三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,,,設函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.18.如圖,在平面四邊形ABCD中,,,,.(1)若點E為邊CD上的動點,求的最小值;(2)若,,,求的值.19.近年來,某地大力發(fā)展文化旅游創(chuàng)意產業(yè),創(chuàng)意維護一處古寨,幾年來,經統(tǒng)計,古寨的使用年限x(年)和所支出的維護費用y(萬元)的相關數(shù)據(jù)如圖所示,根據(jù)以往資料顯示y對x呈線性相關關系.(1)求出y關于x的回歸直線方程;(2)試根據(jù)(1)中求出的回歸方程,預測使用年限至少為幾年時,維護費用將超過10萬元?參考公式:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計分別為.20.某銷售公司擬招聘一名產品推銷員,有如下兩種工資方案:方案一:每月底薪2000元,每銷售一件產品提成15元;方案二:每月底薪3500元,月銷售量不超過300件,沒有提成,超過300件的部分每件提成30元.(1)分別寫出兩種方案中推銷員的月工資(單位:元)與月銷售產品件數(shù)的函數(shù)關系式;(2)從該銷售公司隨機選取一名推銷員,對他(或她)過去兩年的銷售情況進行統(tǒng)計,得到如下統(tǒng)計表:月銷售產品件數(shù)300400500600700次數(shù)24954把頻率視為概率,分別求兩種方案推銷員的月工資超過11090元的概率.21.近年來,鄭州經濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內無能出其右.為了調查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)框圖模擬程序運算即可.【詳解】第一次執(zhí)行程序,,,繼續(xù)循環(huán),第二次執(zhí)行程序,,,,繼續(xù)循環(huán),第三次執(zhí)行程序,,,,繼續(xù)循環(huán),第四次執(zhí)行程序,,,,繼續(xù)循環(huán),第五次執(zhí)行程序,,,,跳出循環(huán),輸出,結束.故選C.【點睛】本題主要考查了程序框圖,涉及循環(huán)結構,解題關鍵注意何時跳出循環(huán),屬于中檔題.2、A【解析】

由題意得,即可得,再結合即可得解.【詳解】由題意知,則.,則,的夾角為.故選:A.【點睛】本題考查了向量數(shù)量積的應用,屬于基礎題.3、C【解析】

根據(jù)二倍角和輔助角公式化簡可得,根據(jù)平移變換原則可得;當時,;利用正弦函數(shù)的圖象可知若的圖象與直線恰有兩個公共點可得,解不等式求得結果.【詳解】由題意得:由圖象平移可知:當時,,,,,又的圖象與直線恰有兩個公共點,解得:本題正確選項:【點睛】本題考查根據(jù)交點個數(shù)求解角的范圍的問題,涉及到利用二倍角和輔助角公式化簡三角函數(shù)、三角函數(shù)圖象平移變換原則的應用等知識;關鍵是能夠利用正弦函數(shù)的圖象,采用數(shù)形結合的方式確定角所處的范圍.4、A【解析】

由可得四邊形為平行四邊形,由·=0得四邊形的對角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對角線互相垂直,∴平行四邊形為菱形.故選A.【點睛】本題考查向量相等和向量數(shù)量積的的應用,解題的關鍵是正確理解有關的概念,屬于基礎題.5、B【解析】

直接利用等差中項的公式求解.【詳解】由題得兩數(shù)1,25的等差中項為.故選:B【點睛】本題主要考查等差中項的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6、C【解析】

利用正弦定理,求得,再利用余弦定理,求得,即可求解.【詳解】在,因為,由正弦定理可化簡得,即,由余弦定理得,因為,所以,故選C.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中在解有關三角形的題目時,要有意識地考慮用哪個定理更合適,要抓住能夠利用某個定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理,著重考查了運算與求解能力,屬于基礎題.7、B【解析】試題分析:如圖,取中點,連接,因為是中點,則,或其補角就是異面直線所成的角,設正四面體棱長為1,則,,.故選B.考點:異面直線所成的角.【名師點睛】求異面直線所成的角的關鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點的選取,選取特殊點時要盡可能地使它與題設的所有相減條件和解題目標緊密地聯(lián)系起來.如已知直線上的某一點,特別是線段的中點,幾何體的特殊線段.8、C【解析】構造函數(shù),則,所以當時,,單調遞減,又在定義域內為偶函數(shù),所以在區(qū)間單調遞增,單調遞減,又等價于,所以解集為.故選C.點睛:本題考查導數(shù)的構造法應用.本題中,由條件構造函數(shù),結合函數(shù)性質,可得抽象函數(shù)在區(qū)間單調遞增,單調遞減,結合函數(shù)草圖,即可解得不等式解集.9、B【解析】

由向量的減法法則,將題中等式化簡得,進而得到,由此可得以為鄰邊的平行四邊形為矩形,得的形狀是直角三角形?!驹斀狻恳驗?,,因為,所以,因為,所以,由此可得以為鄰邊的平行四邊形為矩形,所以,得的形狀是直角三角形?!军c睛】本題給出向量等式,判斷三角形的形狀,著重考查平面向量的加法、減法法則和三角形的形狀判斷等知識。10、A【解析】甲、乙、丙三人隨意坐下有種結果,乙坐中間則有,乙不坐中間有種情況,概率為,故選A.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數(shù)和所求事件包含的基本事件數(shù).(1)基本事件總數(shù)較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區(qū)分排列與組合,以及計數(shù)原理的正確使用.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先利用輔助角公式將函數(shù)的解析式化簡,根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計算出的值.【詳解】,由題意可得,因此,,故答案為.【點睛】本題考查輔助角公式化簡、三角函數(shù)圖象變換,在三角圖象相位變換的問題中,首先應該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進行加減,考查計算能力,屬于中等題.12、【解析】

將這兩式中的量全部用表示出來,正好有兩個方程,兩個未知數(shù),解方程組即可求出?!驹斀狻肯喈斢?,相當于,上面兩式相除得代入就得,【點睛】基本量法是解決數(shù)列計算題最重要的方法,即將條件全部用首項和公比表示,列方程,解方程即可求得。13、【解析】

分析:先根據(jù)三角形面積公式求出母線長,再根據(jù)母線與底面所成角得底面半徑,最后根據(jù)圓錐側面積公式求結果.詳解:因為母線,所成角的余弦值為,所以母線,所成角的正弦值為,因為的面積為,設母線長為所以,因為與圓錐底面所成角為45°,所以底面半徑為因此圓錐的側面積為14、【解析】

利用基本不等式可求得函數(shù)的最小值.【詳解】,由基本不等式得,當且僅當時,等號成立,因此,當時,函數(shù)的最小值是.故答案為:.【點睛】本題考查利用基本不等式求函數(shù)的最值,考查計算能力,屬于基礎題.15、【解析】

利用余弦定理化簡已知條件,求得的值,進而求得的大小.【詳解】由得,由于,所以.【點睛】本小題主要考查余弦定理解三角形,考查特殊角的三角函數(shù)值,屬于基礎題.16、32或【解析】

由余弦定理求出c,再利用面積公式即可得到答案?!驹斀狻坑捎谠讦BC中,A=30°,a=7,b=23,根據(jù)余弦定理可得:a2=b所以當c=1時,ΔABC的面積S=12bcsinA=32故ΔABC的面積等于32或【點睛】本題考查余弦定理與面積公式在三角形中的應用,屬于中檔題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)時,取最小值;時,取最大值1.【解析】

試題分析:(1)根據(jù)向量數(shù)量積、二倍角公式及配角公式得,再根據(jù)正弦函數(shù)性質得.(2)先根據(jù)得,,再根據(jù)正弦函數(shù)性質得最大值和最小值.試題解析:(1),最小正周期為.(2)當時,,由圖象可知時單調遞增,時單調遞減,所以當,即時,取最小值;當,即時,取最大值1.18、(1);(2)【解析】

(1)建立平面直角坐標系,將范圍問題轉化為函數(shù)的最值問題,進而求解函數(shù)的最值即可;(2)根據(jù)、兩點的位置,可以寫出對應的坐標,從而在直角三角形中求得的正余弦,進而用余弦的和角公式進行求解.【詳解】(1)設AC,BD相交于O,由于,所以,所以,因此,以DB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標系如下圖所示:故,,,.因為直線CD的方程為,所以可設.所以,.所以,當時,最小為.(2)因為,,所以,.因此,,.所以,.所以,.【點睛】本題考查利用向量解決幾何問題,涉及范圍問題的求解,屬經典好題.19、(1)(2)使用年限至少為14年時,維護費用將超過10萬元【解析】

(1)由已知圖形中的數(shù)據(jù)求得與的值,則線性回歸方程可求;(2)直接由求得的范圍得答案.【詳解】(1),,,.故線性回歸方程為;(2)由,解得.故使用年限至少為14年時,維護費用將超過10萬元.【點睛】本題考查線性回歸方程的求法,考查計算能力,是基礎題.20、(1);(2)方案一概率為,方案二概率為.【解析】

(1)利用一次函數(shù)和分段函數(shù)分別表示方案一、方案二的月工資與的關系式;(2)分別計算方案一、方案二的推銷員的月工資超過11090元的概率值.【詳解】解:(1)方案一:,;方案二:月工資為,所以.(2)方案一中推銷員的月工資超過11090元,則,解得,所以方案一中推銷員的月工資超過11090元的概率為;方案二中推銷員的月工資超過11090元,則,解得,所以方案二中推銷員的月工資超過11090元的概率為.【點睛】本題考查了分段函數(shù)與應用問題,也考查了利用頻率估計概率的應用問題,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于基礎題.21、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】

(I)根據(jù)頻率之和為列方程,結合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論