




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省兩校2023-2024學年高一數(shù)學第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知x?y的取值如下表:x0134y2.24.34.86.7從散點圖可以看出y與x線性相關,且回歸方程,則當時,估計y的值為()A.7.1 B.7.35 C.7.95 D.8.62.設函數(shù),其中均為非零常數(shù),若,則的值是()A.2 B.4 C.6 D.不確定3.已知等邊三角形ABC的邊長為1,,那么().A.3 B.-3 C. D.4.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分則可中獎,小明要想增加中獎機會,應選擇的游戲盤是A. B. C. D.5.已知集合,,則()A. B. C. D.6.如圖,直角的斜邊長為2,,且點分別在軸,軸正半軸上滑動,點在線段的右上方.設,(),記,,分別考察的所有運算結果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值7.若等差數(shù)列的前10項之和大于其前21項之和,則的值()A.大于0 B.等于0 C.小于0 D.不能確定8.已知一組數(shù)1,1,2,3,5,8,,21,34,55,按這組數(shù)的規(guī)律,則應為()A.11 B.12 C.13 D.149.在中,,,角的平分線,則長為()A. B. C. D.10.若等差數(shù)列的前5項之和,且,則()A.12 B.13 C.14 D.15二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期為_______.12.下邊程序執(zhí)行后輸出的結果是().13.經(jīng)過點,且在兩坐標軸上的截距之和為2的直線的一般式方程為________.14.函數(shù)的圖象在點處的切線方程是,則__________.15.設,則等于________.16.下圖是2016年在巴西舉行的奧運會上,七位評委為某體操運動員的單項比賽打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達式及定義域;(2)求的最大值及此時的值18.在中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知.(1)求角B的大小;(2)設a=2,c=3,求b和的值.19.記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.(1)求的通項公式;(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.20.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a21.已知圓:.(1)過的直線與圓:交于,兩點,若,求直線的方程;(2)過的直線與圓:交于,兩點,直接寫出面積取值范圍;(3)已知,,圓上是否存在點,使得,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
計算,,代入回歸方程計算得到,再計算得到答案.【詳解】,,故,解得.當,.故選:【點睛】本題考查了回歸方程的應用,意在考查學生的計算能力.2、C【解析】
根據(jù)正弦、余弦的誘導公式,由,可以得到等式,求出的表達式,結合剛得到的等式求值即可.【詳解】因為,所以.故選:C【點睛】本題考查三角函數(shù)的化簡求值,考查誘導公式的應用,屬于基礎題.3、D【解析】
利用向量的數(shù)量積即可求解.【詳解】解析:.故選:D【點睛】本題考查了向量的數(shù)量積,注意向量夾角的定義,屬于基礎題.4、A【解析】由幾何概型公式:A中的概率為,B中的概率為,C中的概率為,D中的概率為.本題選擇A選項.點睛:解答幾何概型問題的關鍵在于弄清題中的考察對象和對象的活動范圍.當考察對象為點,點的活動范圍在線段上時,用線段長度比計算;當考察對象為線時,一般用角度比計算,即當半徑一定時,由于弧長之比等于其所對應的圓心角的度數(shù)之比,所以角度之比實際上是所對的弧長(曲線長)之比.5、A【解析】
首先求得集合,根據(jù)交集定義求得結果.【詳解】本題正確選項:【點睛】本題考查集合運算中的交集運算,屬于基礎題.6、B【解析】
設,用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡,進而求得最值的情況.【詳解】依題意,所以.設,則,所以,,所以,當時,取得最大值為.,所以,所以,當時,有最小值為.故選B.【點睛】本小題主要考查平面向量數(shù)量積的坐標運算,考查三角函數(shù)化簡求值,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.7、C【解析】
根據(jù)條件得到不等式,化簡后可判斷的情況.【詳解】據(jù)題意:,則,所以,即,則:,故選C.【點睛】本題考查等差數(shù)列前項和的應用,難度較易.等差數(shù)列前項和之間的關系可以轉(zhuǎn)化為與的關系.8、C【解析】
易得從第三項開始數(shù)列的每項都為前兩項之和,再求解即可.【詳解】易得從第三項開始數(shù)列的每項都為前兩項之和,故.故選:C【點睛】該數(shù)列為“斐波那契數(shù)列”,從第三項開始數(shù)列的每項都為前兩項之和,屬于基礎題.9、B【解析】
在中利用正弦定理可求,從而可求,再根據(jù)內(nèi)角和為可得,從而得到為等腰三角形,故可求的長.【詳解】在中,由正弦定理有即,所以,因為,故,故,所以,故,為等腰三角形,故.故選B.【點睛】在解三角形中,我們有時需要找出不同三角形之間相關聯(lián)的邊或角,由它們溝通分散在不同三角形的幾何量.10、B【解析】試題分析:由題意得,,又,則,又,所以等差數(shù)列的公差為,所以.考點:等差數(shù)列的通項公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將三角函數(shù)進行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結果.【詳解】,.【點睛】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.12、15【解析】試題分析:程序執(zhí)行中的數(shù)據(jù)變化如下:,輸出考點:程序語句13、【解析】
由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式14、【解析】由導數(shù)的幾何意義可知,又,所以.15、【解析】
首先根據(jù)題中求出的周期,然后利用周期性即可求出答案.【詳解】由題知,有,故的周期為,故,又因為,有.故答案為:.【點睛】本題考查了三角函數(shù)的周期性,屬于基礎題.16、【解析】由平均數(shù)公式可得,故所求數(shù)據(jù)的方差是,應填答案。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,取最大值.【解析】
(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設,則,,則,,則.,當時,,此時,即,,,,故.故的最大值為,此時.【點睛】本題考查了三角函數(shù)的應用,重點考查了運算能力,屬中檔題18、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由題意結合正弦定理邊化角結合同角三角函數(shù)基本關系可得,則B=.(Ⅱ)在△ABC中,由余弦定理可得b=.結合二倍角公式和兩角差的正弦公式可得詳解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因為,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因為a<c,故.因此,所以,點睛:在處理三角形中的邊角關系時,一般全部化為角的關系,或全部化為邊的關系.題中若出現(xiàn)邊的一次式一般采用到正弦定理,出現(xiàn)邊的二次式一般采用到余弦定理.應用正、余弦定理時,注意公式變式的應用.解決三角形問題時,注意角的限制范圍.19、(1);(2)見解析.【解析】試題分析:(1)由等比數(shù)列通項公式解得,即可求解;(2)利用等差中項證明Sn+1,Sn,Sn+2成等差數(shù)列.試題解析:(1)設的公比為.由題設可得,解得,.故的通項公式為.(2)由(1)可得.由于,故,,成等差數(shù)列.點睛:等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應有意識地去應用.但在應用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進行適當變形.在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.20、(1)-π4【解析】
(1)兩向量垂直,坐標關系滿足x1x2+y1y2=0,由已知可得關于sin【詳解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【點睛】本題考查向量的坐標運算,兩向量垂直,求兩向量之和的模的最大值,當計算到最大值為3+22時,由平方和公式還可以繼續(xù)化簡,即3+221、(1)或;(2);(3)存在,理由見解析【解析】
求得圓的圓心和半徑.(1)設出直線的方程,利用弦長、勾股定理和點到直線距離列方程,解方程求得直線的斜率,進而求得直線的方程.(2)利用三角形的面積公式列式,由此求得面積取值范圍.(3)求得三角形外接圓的方程,根據(jù)圓和圓的位置關系,判斷出點存在.【詳解】圓心為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 信號集中監(jiān)測系統(tǒng)采集原理移頻軌道電路74課件
- 針刺傷防護護理專家共識
- T/CAAM 0001-2022火針
- 社區(qū)災害救護護理的總結
- 工業(yè)互聯(lián)網(wǎng)平臺網(wǎng)絡安全態(tài)勢感知技術安全監(jiān)測與預警2025年實踐報告
- 醫(yī)療器械臨床試驗質(zhì)量管理在臨床試驗質(zhì)量管理持續(xù)監(jiān)控中的應用報告
- 2025年直播電商主播影響力與直播帶貨效果評估營銷策略研究報告
- 脂肪肝的護理診斷及措施
- 數(shù)字化營銷賦能食品飲料行業(yè):2025年電商運營渠道創(chuàng)新與市場拓展策略報告
- 2025年公路貨運行業(yè)數(shù)字化轉(zhuǎn)型與效率提升的物流企業(yè)人力資源優(yōu)化報告
- 醫(yī)院檢驗科實驗室生物安全程序文件SOP
- 服務中心及辦公室裝修設計方案
- 體質(zhì)測量與評價期末考試試題及答案
- 行業(yè)標準:GB∕T 9254.2-2021 信息技術設備、多媒體設備和接收機 電磁兼容 第2部分:抗擾度要求
- 氫能無人機項目可研報告范文參考
- 簧片落料彎曲級進模設計畢業(yè)設計(論文)
- 完整版8D改善報告
- MSA測量系統(tǒng)分析軟件(第三版A級實例)
- 工業(yè)硅技術安全操作規(guī)程
- 消防工程項目樣板區(qū)、樣板間方案
- 導流明渠施工方案(共4頁)
評論
0/150
提交評論