版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省兩校2023-2024學(xué)年高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知x?y的取值如下表:x0134y2.24.34.86.7從散點圖可以看出y與x線性相關(guān),且回歸方程,則當(dāng)時,估計y的值為()A.7.1 B.7.35 C.7.95 D.8.62.設(shè)函數(shù),其中均為非零常數(shù),若,則的值是()A.2 B.4 C.6 D.不確定3.已知等邊三角形ABC的邊長為1,,那么().A.3 B.-3 C. D.4.有四個游戲盤,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分則可中獎,小明要想增加中獎機(jī)會,應(yīng)選擇的游戲盤是A. B. C. D.5.已知集合,,則()A. B. C. D.6.如圖,直角的斜邊長為2,,且點分別在軸,軸正半軸上滑動,點在線段的右上方.設(shè),(),記,,分別考察的所有運算結(jié)果,則()A.有最小值,有最大值 B.有最大值,有最小值C.有最大值,有最大值 D.有最小值,有最小值7.若等差數(shù)列的前10項之和大于其前21項之和,則的值()A.大于0 B.等于0 C.小于0 D.不能確定8.已知一組數(shù)1,1,2,3,5,8,,21,34,55,按這組數(shù)的規(guī)律,則應(yīng)為()A.11 B.12 C.13 D.149.在中,,,角的平分線,則長為()A. B. C. D.10.若等差數(shù)列的前5項之和,且,則()A.12 B.13 C.14 D.15二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小正周期為_______.12.下邊程序執(zhí)行后輸出的結(jié)果是().13.經(jīng)過點,且在兩坐標(biāo)軸上的截距之和為2的直線的一般式方程為________.14.函數(shù)的圖象在點處的切線方程是,則__________.15.設(shè),則等于________.16.下圖是2016年在巴西舉行的奧運會上,七位評委為某體操運動員的單項比賽打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖扇形的圓心角,半徑為2,E為弧AB的中點C?D為弧AB上的動點,且,記,四邊形ABCD的面積為.(1)求函數(shù)的表達(dá)式及定義域;(2)求的最大值及此時的值18.在中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知.(1)求角B的大?。唬?)設(shè)a=2,c=3,求b和的值.19.記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.(1)求的通項公式;(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.20.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a21.已知圓:.(1)過的直線與圓:交于,兩點,若,求直線的方程;(2)過的直線與圓:交于,兩點,直接寫出面積取值范圍;(3)已知,,圓上是否存在點,使得,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
計算,,代入回歸方程計算得到,再計算得到答案.【詳解】,,故,解得.當(dāng),.故選:【點睛】本題考查了回歸方程的應(yīng)用,意在考查學(xué)生的計算能力.2、C【解析】
根據(jù)正弦、余弦的誘導(dǎo)公式,由,可以得到等式,求出的表達(dá)式,結(jié)合剛得到的等式求值即可.【詳解】因為,所以.故選:C【點睛】本題考查三角函數(shù)的化簡求值,考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
利用向量的數(shù)量積即可求解.【詳解】解析:.故選:D【點睛】本題考查了向量的數(shù)量積,注意向量夾角的定義,屬于基礎(chǔ)題.4、A【解析】由幾何概型公式:A中的概率為,B中的概率為,C中的概率為,D中的概率為.本題選擇A選項.點睛:解答幾何概型問題的關(guān)鍵在于弄清題中的考察對象和對象的活動范圍.當(dāng)考察對象為點,點的活動范圍在線段上時,用線段長度比計算;當(dāng)考察對象為線時,一般用角度比計算,即當(dāng)半徑一定時,由于弧長之比等于其所對應(yīng)的圓心角的度數(shù)之比,所以角度之比實際上是所對的弧長(曲線長)之比.5、A【解析】
首先求得集合,根據(jù)交集定義求得結(jié)果.【詳解】本題正確選項:【點睛】本題考查集合運算中的交集運算,屬于基礎(chǔ)題.6、B【解析】
設(shè),用表示出,根據(jù)的取值范圍,利用三角函數(shù)恒等變換化簡,進(jìn)而求得最值的情況.【詳解】依題意,所以.設(shè),則,所以,,所以,當(dāng)時,取得最大值為.,所以,所以,當(dāng)時,有最小值為.故選B.【點睛】本小題主要考查平面向量數(shù)量積的坐標(biāo)運算,考查三角函數(shù)化簡求值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.7、C【解析】
根據(jù)條件得到不等式,化簡后可判斷的情況.【詳解】據(jù)題意:,則,所以,即,則:,故選C.【點睛】本題考查等差數(shù)列前項和的應(yīng)用,難度較易.等差數(shù)列前項和之間的關(guān)系可以轉(zhuǎn)化為與的關(guān)系.8、C【解析】
易得從第三項開始數(shù)列的每項都為前兩項之和,再求解即可.【詳解】易得從第三項開始數(shù)列的每項都為前兩項之和,故.故選:C【點睛】該數(shù)列為“斐波那契數(shù)列”,從第三項開始數(shù)列的每項都為前兩項之和,屬于基礎(chǔ)題.9、B【解析】
在中利用正弦定理可求,從而可求,再根據(jù)內(nèi)角和為可得,從而得到為等腰三角形,故可求的長.【詳解】在中,由正弦定理有即,所以,因為,故,故,所以,故,為等腰三角形,故.故選B.【點睛】在解三角形中,我們有時需要找出不同三角形之間相關(guān)聯(lián)的邊或角,由它們溝通分散在不同三角形的幾何量.10、B【解析】試題分析:由題意得,,又,則,又,所以等差數(shù)列的公差為,所以.考點:等差數(shù)列的通項公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
將三角函數(shù)進(jìn)行降次,然后通過輔助角公式化為一個名稱,最后利用周期公式得到結(jié)果.【詳解】,.【點睛】本題主要考查二倍角公式,及輔助角公式,周期的運算,難度不大.12、15【解析】試題分析:程序執(zhí)行中的數(shù)據(jù)變化如下:,輸出考點:程序語句13、【解析】
由題可知,直線在x上軸截距為-3,再利用截距式可直接求得直線方程【詳解】∵直線過(0,5),∴直線在y軸上的截距為5,又直線在兩坐標(biāo)軸上的截距之和為2,∴直線在x軸上的截距為2-5=-3∴直線方程為,即5x-3y+15=0【點睛】直線方程有五種基本形式,在只知道橫縱截距的情況下,截距式是最快捷的一種方式14、【解析】由導(dǎo)數(shù)的幾何意義可知,又,所以.15、【解析】
首先根據(jù)題中求出的周期,然后利用周期性即可求出答案.【詳解】由題知,有,故的周期為,故,又因為,有.故答案為:.【點睛】本題考查了三角函數(shù)的周期性,屬于基礎(chǔ)題.16、【解析】由平均數(shù)公式可得,故所求數(shù)據(jù)的方差是,應(yīng)填答案。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當(dāng)時,取最大值.【解析】
(1)取OE與DC?AB的交點分別為M?N,在中,分別求出,,再利用梯形的面積公式求解即可;(2)令,則,,再求最值即可.【詳解】解:(1),OE與DC?AB的交點分別為M?N,由已知可知,在中,.,,梯形ABCD的高,則.(2)設(shè),則,,則,,則.,當(dāng)時,,此時,即,,,,故.故的最大值為,此時.【點睛】本題考查了三角函數(shù)的應(yīng)用,重點考查了運算能力,屬中檔題18、(Ⅰ);(Ⅱ),.【解析】分析:(Ⅰ)由題意結(jié)合正弦定理邊化角結(jié)合同角三角函數(shù)基本關(guān)系可得,則B=.(Ⅱ)在△ABC中,由余弦定理可得b=.結(jié)合二倍角公式和兩角差的正弦公式可得詳解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因為,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因為a<c,故.因此,所以,點睛:在處理三角形中的邊角關(guān)系時,一般全部化為角的關(guān)系,或全部化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用到正弦定理,出現(xiàn)邊的二次式一般采用到余弦定理.應(yīng)用正、余弦定理時,注意公式變式的應(yīng)用.解決三角形問題時,注意角的限制范圍.19、(1);(2)見解析.【解析】試題分析:(1)由等比數(shù)列通項公式解得,即可求解;(2)利用等差中項證明Sn+1,Sn,Sn+2成等差數(shù)列.試題解析:(1)設(shè)的公比為.由題設(shè)可得,解得,.故的通項公式為.(2)由(1)可得.由于,故,,成等差數(shù)列.點睛:等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進(jìn)行適當(dāng)變形.在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.20、(1)-π4【解析】
(1)兩向量垂直,坐標(biāo)關(guān)系滿足x1x2+y1y2=0,由已知可得關(guān)于sin【詳解】(1)∵a⊥b,∴sinθ+cosθ=0(2)|a+b|=(1+sinθ)2+【點睛】本題考查向量的坐標(biāo)運算,兩向量垂直,求兩向量之和的模的最大值,當(dāng)計算到最大值為3+22時,由平方和公式還可以繼續(xù)化簡,即3+221、(1)或;(2);(3)存在,理由見解析【解析】
求得圓的圓心和半徑.(1)設(shè)出直線的方程,利用弦長、勾股定理和點到直線距離列方程,解方程求得直線的斜率,進(jìn)而求得直線的方程.(2)利用三角形的面積公式列式,由此求得面積取值范圍.(3)求得三角形外接圓的方程,根據(jù)圓和圓的位置關(guān)系,判斷出點存在.【詳解】圓心為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025河南建筑安全員-A證考試題庫附答案
- 貴州大學(xué)《醫(yī)學(xué)統(tǒng)計學(xué)規(guī)培》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財經(jīng)職業(yè)學(xué)院《火災(zāi)動力學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025福建建筑安全員考試題庫
- 貴陽學(xué)院《保險投資學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《植物造景技術(shù)(一)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州幼兒師范高等??茖W(xué)校《無人機(jī)結(jié)構(gòu)與系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年貴州省安全員B證考試題庫及答案
- 2025江蘇建筑安全員《B證》考試題庫及答案
- 2025年河南省安全員《C證》考試題庫及答案
- 工程機(jī)械租賃服務(wù)方案及保障措施范本
- SCI論文寫作課件
- 封條模板A4直接打印版
- 春節(jié)停工報告完整版3頁
- 振動篩使用說明書..(共10頁)
- (完整版)展廳展館博物館美術(shù)館設(shè)計標(biāo)招標(biāo)評分細(xì)則及打分表
- [宋小寶小品甄嬛后傳臺詞]甄嬛歪傳小品劇本臺詞范本
- 扭扭棒手工PPT課件
- 曲式分析演唱技巧情感運用
- 古建筑白蟻危害及防控現(xiàn)狀
- 建筑裝飾裝修施工組織設(shè)計方案(完整版)
評論
0/150
提交評論