




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省長春市九臺區(qū)第四中學(xué)2024年數(shù)學(xué)高一下期末復(fù)習(xí)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知兩個變量x,y之間具有線性相關(guān)關(guān)系,試驗測得(x,y)的四組值分別為(1,2),(2,4),(3,5),(4,7),則y與x之間的回歸直線方程為()A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.22.設(shè)的內(nèi)角,,所對的邊分別為,,,且,,面積的最大值為()A.6 B.8 C.7 D.93.設(shè)是定義在上的偶函數(shù),若當時,,則()A. B. C. D.4.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().A. B. C. D.5.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B. C. D.6.在數(shù)列中,已知,,則一定()A.是等差數(shù)列 B.是等比數(shù)列 C.不是等差數(shù)列 D.不是等比數(shù)列7.在銳角中,內(nèi)角,,所對的邊分別為,,,若的面積為,且,則的周長的取值范圍是A. B.C. D.8.如圖2所示,程序框圖的輸出結(jié)果是()A.3 B.4 C.5 D.89.袋中有個大小相同的小球,其中個白球,個紅球,個黑球,現(xiàn)在從中任意取一個,則取出的球恰好是紅色或者黑色小球的概率為()A. B. C. D.10.若不等式的解集是,則的值為()A.12 B. C. D.10二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列的前項和為,若數(shù)列的各項按如下規(guī)律排列:,,,,,,,,,,…,,,…,,…有如下運算和結(jié)論:①;②數(shù)列,,,,…是等比數(shù)列;③數(shù)列,,,,…的前項和為;④若存在正整數(shù),使,,則.其中正確的結(jié)論是_____.(將你認為正確的結(jié)論序號都填上)12.設(shè)為數(shù)列的前項和,則__13.已知,向量的夾角為,則的最大值為_____.14.在中,角的對邊分別為,若,則_______.(僅用邊表示)15.已知,則的值是______.16.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某商場有獎銷售中,購滿100元商品得1張獎券,多購多得,100張獎券為一個開獎單位,每個開獎單位設(shè)特等獎1個,一等獎10個,二等獎50個,設(shè)一張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,可知其概率平分別為.(1)求1張獎券中獎的概率;(2)求1張獎券不中特等獎且不中一等獎的概率.18.已知數(shù)列滿足:.(1)若為等差數(shù)列,求的通項公式;(2)若單調(diào)遞增,求的取值范圍;19.如圖,等腰梯形中,,,,取中點,連接,把三角形沿折起,使得點在底面上的射影落在上,設(shè)為的中點.(1)求證:平面;(2)求二面角的余弦值.20.已知公差不為0的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.在銳角中,角所對的邊分別為,已知,,.(1)求角的大??;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:設(shè)樣本中線點為,其中,即樣本中心點為,因為回歸直線必過樣本中心點,將代入四個選項只有B,C成立,畫出散點圖分析可知兩個變量x,y之間正相關(guān),故C正確.考點:回歸直線方程2、D【解析】
由已知利用基本不等式求得的最大值,根據(jù)三角形的面積公式,即可求解,得到答案.【詳解】由題意,利用基本不等式可得,即,解得,當且僅當時等號成立,又因為,所以,當且僅當時等號成立,故三角形的面積的最大值為,故選D.【點睛】本題主要考查了基本不等式的應(yīng)用,以及三角形的面積公式的應(yīng)用,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎(chǔ)題.3、A【解析】
利用函數(shù)的為偶函數(shù),可得,代入解析式即可求解.【詳解】是定義在上的偶函數(shù),則,又當時,,所以.故選:A【點睛】本題考查了利用函數(shù)的奇偶性求函數(shù)值,屬于基礎(chǔ)題.4、B【解析】
根據(jù)所給數(shù)據(jù),分別求出平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,然后進行比較可得選項.【詳解】,中位數(shù)為,眾數(shù)為.故選:B.【點睛】本題主要考查統(tǒng)計量的求解,明確平均數(shù)、中位數(shù)、眾數(shù)的求解方法是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).5、A【解析】
若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質(zhì)6、C【解析】
依據(jù)等差、等比數(shù)列的定義或性質(zhì)進行判斷?!驹斀狻恳驗椋?,,所以一定不是等差數(shù)列,故選C?!军c睛】本題主要考查等差、等比數(shù)列定義以及性質(zhì)的應(yīng)用。7、C【解析】
首先根據(jù)面積公式和余弦定理可將已知變形為,,然后根據(jù)正弦定理,將轉(zhuǎn)化為,利用,化簡為,再根據(jù)三角形是銳角三角形,得到的范圍,轉(zhuǎn)化為三角函數(shù)求取值范圍的問題.【詳解】因為的面積為,所以,所以,由余弦定理可得,則,即,所以.由正弦定理可得,所以.因為為銳角三角形,所以,所以,則,即.故的周長的取值范圍是.【點睛】本題考查了正余弦定理和三角形面積公式,以及輔助角公式和三角函數(shù)求取值范圍的問題,屬于中檔題型,本題需認真審題,當是銳角三角形時,需滿足三個角都是銳角,即.8、B【解析】
由框圖可知,①,滿足條件,則;②,滿足條件,則;③,滿足條件,則;④,不滿足條件,輸出;故選B9、D【解析】
利用古典概型的概率公式可計算出所求事件的概率.【詳解】從袋中個球中任取一個球,取出的球恰好是一個紅色或黑色小球的基本事件數(shù)為,因此,取出的球恰好是紅色或者黑色小球的概率為,故選D.【點睛】本題考查古典概型概率的計算,解題時要確定出全部基本事件數(shù)和所求事件所包含的基本事件數(shù),并利用古典概型的概率公式進行計算,考查計算能力,屬于基礎(chǔ)題.10、B【解析】
將不等式解集轉(zhuǎn)化為對應(yīng)方程的根,然后根據(jù)韋達定理求出方程中的參數(shù),從而求出所求.【詳解】解:不等式的解集為,為方程的兩個根,根據(jù)韋達定理:解得,故選:B?!军c睛】本題主要考查了一元二次不等式的應(yīng)用,以及韋達定理的運用和一元二次不等式解集與所對應(yīng)一元二次方程根的關(guān)系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③④【解析】
根據(jù)題中所給的條件,將數(shù)列的項逐個寫出,可以求得,將數(shù)列的各項求出,可以發(fā)現(xiàn)其為等差數(shù)列,故不是等比數(shù)列,利用求和公式求得結(jié)果,結(jié)合條件,去挖掘條件,最后得到正確的結(jié)果.【詳解】對于①,前24項構(gòu)成的數(shù)列是,所以,故①正確;對于②,數(shù)列是,可知其為等差數(shù)列,不是等比數(shù)列,故②不正確;對于③,由上邊結(jié)論可知是以為首項,以為公比的等比數(shù)列,所以有,故③正確;對于④,由③知,即,解得,且,故④正確;故答案是①③④.【點睛】該題考查的是有關(guān)數(shù)列的性質(zhì)以及對應(yīng)量的運算,解題的思想是觀察數(shù)列的通項公式,理解項與和的關(guān)系,認真分析,仔細求解,從而求得結(jié)果.12、【解析】
當時,;當時,,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因為,,所以,同理可得,,,所以,應(yīng)選答案.點睛:本題運用演繹推理的思維方法,分別探求出數(shù)列各項的規(guī)律(成等比數(shù)列),再運用等比數(shù)列的求和公式,使得問題簡捷、巧妙獲解.13、【解析】
將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.14、【解析】
直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,主要考察學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.15、【解析】
根據(jù)兩角差的正切公式即可求解【詳解】故答案為:【點睛】本題考查兩角差的正切公式的用法,屬于基礎(chǔ)題16、【解析】
利用正弦定理得到,再根據(jù)有兩解得到,計算得到答案.【詳解】由正弦定理得:若有兩解:故答案為【點睛】本題考查了正弦定理,有兩解,意在考查學(xué)生的計算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)1張獎券中獎包括中特等獎、一等獎、二等獎,且、、兩兩互斥,利用互斥事件的概率加法公式求解即可;(2)“1張獎券不中特等獎且不中一等獎”的對立事件為“1張獎券中特等獎或中一等獎”,則利用互斥事件的概率公式求解即可【詳解】(1)1張獎券中獎包括中特等獎、一等獎、二等獎,設(shè)“1張獎券中獎”為事件,則,因為、、兩兩互斥,所以故1張獎券中獎的概率為(2)設(shè)“1張獎券不中特等獎且不中一等獎”為事件,則事件與“1張獎券中特等獎或中一等獎”為對立事件,所以,故1張獎券不中特等獎且不中一等獎的概率為【點睛】本題考查互斥事件的概率加法公式的應(yīng)用,考查古典概型,考查利用對立事件求概率18、(1)(2)【解析】
(1)設(shè)出的通項公式,根據(jù)計算出對應(yīng)的首項和公差,即可求解出通項公式;(2)根據(jù)條件得到,得到的奇數(shù)項成等差數(shù)列,的偶數(shù)項也成等差數(shù)列,根據(jù)單調(diào)遞增列出關(guān)于的不等式,求解出范圍即可.【詳解】(1)設(shè),所以,所以,所以,所以;(2)因為,所以,所以,又因為,所以,當為奇數(shù)時,,當為偶數(shù)時,,因為單調(diào)遞增,所以,所以,所以.【點睛】本題考查等差數(shù)列的基本量求解以及根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,難度一般.(1)已知數(shù)列的類型和數(shù)列的遞推公式求解數(shù)列通項公式時,可采用設(shè)出數(shù)列通項公式的形式,然后根據(jù)遞推關(guān)系求解出數(shù)列通項公式中的基本量;(2)數(shù)列的單調(diào)性可通過與的大小關(guān)系來判斷.19、(1)見解析;(2).【解析】
(1)取的中點,取的中點,連接、、、、,可知、均為等邊三角形,可證明出平面,從而得出,再證明出四邊形為平行四邊形,可得出,由等腰三角形三線合一的性質(zhì)可得,從而可得出,再利用線面垂直的判定定理可證明出平面;(2)過點在平面內(nèi)作,垂足為點,連接,證明出平面,可得知二面角的平面角為,計算出直角三角形三邊邊長,即可求出,即為所求.【詳解】(1)如下圖所示,取的中點,取的中點,連接、、、、,在等腰梯形中,,,,為的中點,所以,,又,則,為等邊三角形,同理可知為等邊三角形,為的中點,,,,平面,平面,,由于和是邊長相等的等邊三角形,且為的中點,,為的中點,.在等腰梯形中,且,則四邊形為平行四邊形,、分別為、的中點,且,為的中點,且,則四邊形為平行四邊形,,,,平面;(2)過點在平面內(nèi)作,垂足為點,連接,由于點在平面內(nèi)的射影點在上,則平面平面,由(1)知,,又平面平面,平面,平面,平面,,,,平面,平面,,所以,二面角的平面角為,在中,,,,,,因此,二面角的余弦值為.【點睛】本題主要考查線面垂直的判定以及二面角的求法,解題的關(guān)鍵就是找出二面角的平面角,通過解三角形來求解二面角,考查推理能力與計算能力,屬于中等題.20、(1)(2)【解析】
試題分析:(1)由已知條件,利用等差數(shù)列的前n項和公式和通項公式及等比數(shù)列的性質(zhì)列出方程組,求出等差數(shù)列的首項和公差,由此能求出數(shù)列{an}的通項公式;(2)由題意推導(dǎo)出bn=22n+1+1,由此利用分組求和法能求出數(shù)列{bn}的前n項和.詳解:(Ⅰ)設(shè)等差數(shù)列的公差為.因為,所以.①因為成等比數(shù)列,所以.②由①,②可得:.所以.(Ⅱ)由題意,設(shè)數(shù)列的前項和為,,,所以數(shù)列為以為首項,以為公比的等比數(shù)列所以點睛:這個題目考查的是數(shù)列通項公式的求法及數(shù)列求和的常用方法;數(shù)列通項的求法中有常見的已知和的關(guān)系,求表達式,一般是寫出作差得通項,但是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拓片直播測試題及答案
- 保險消保培訓(xùn)
- 腫瘤介入治療健康宣教
- 支原體肺炎診療與防控培訓(xùn)
- 語言教育中的小羊與狼故事應(yīng)用
- 6S管理內(nèi)容培訓(xùn)
- 腫瘤科病人飲食
- 2025年中國磨砂皂行業(yè)市場全景分析及前景機遇研判報告
- 中醫(yī)內(nèi)科學(xué):消渴診治要點解析
- 團餐服務(wù)流程及規(guī)范培訓(xùn)
- (完整word版)高考英語作文練習(xí)紙(標準答題卡)
- 鋼便橋拆除施工方案
- DB13T 5387-2021 水庫庫容曲線修測及特征值復(fù)核修正技術(shù)導(dǎo)則
- 職業(yè)道德與法治教學(xué)課件匯總完整版電子教案
- 蒂森克虜伯電梯 MC2-B控制系統(tǒng)用戶手冊
- JIS G4305-2021 冷軋不銹鋼板材、薄板材和帶材
- 危險化學(xué)品臨界量表(參考)
- 墻柱梁板混凝土同時澆筑方案.doc
- 新生兒視覺訓(xùn)練黑白卡(整理90張必備圖卡)
- 礦山地質(zhì)環(huán)境恢復(fù)治理方案治理經(jīng)費估算計算部分
- 大學(xué)遺傳學(xué)期末考試題庫及答案參考
評論
0/150
提交評論