2025屆陜西省榆林市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁(yè)
2025屆陜西省榆林市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁(yè)
2025屆陜西省榆林市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁(yè)
2025屆陜西省榆林市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁(yè)
2025屆陜西省榆林市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆陜西省榆林市第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)在區(qū)間(1,2)上是增函數(shù),則實(shí)數(shù)a的取值范圍是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)2.若變量,滿足約束條件,且的最大值為,最小值為,則的值是A. B.C. D.3.已知數(shù)列的前項(xiàng)和為,且,若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.以兩點(diǎn)A(-3,-1)和B(5,5)為直徑端點(diǎn)的圓的標(biāo)準(zhǔn)方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=255.函數(shù)的部分圖象如圖所示,為了得到的圖象,只需將的圖象A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位6.已知,則滿足的關(guān)系式是A.,且 B.,且C.,且 D.,且7.已知兩個(gè)球的表面積之比為,則這兩個(gè)球的體積之比為()A. B. C. D.8.在中,角、、所對(duì)的邊分別為、、,若,則是()A.銳角三角形 B.直角三角形 C.鈍角三角形 D.等腰三角形9.設(shè),是兩個(gè)不同的平面,a,b是兩條不同的直線,給出下列四個(gè)命題,正確的是()A.若,,則 B.若,,,則C.若,,,則 D.若,,,則10.已知直線l的方程為2x+3y=5,點(diǎn)P(a,b)在l上位于第一象限內(nèi)的點(diǎn),則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知不等式的解集為,則________.12.若關(guān)于x的不等式ax2+bx+c<0的解集是{x|x<-2或x>-1},則關(guān)于x的不等式cx2+bx+a>0的解集是____________.13.已知為第二象限角,且,則_________.14.在等比數(shù)列中,若,則__________.15.已知為所在平面內(nèi)一點(diǎn),且,則_____16.已知,且,則的值是_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,已知以點(diǎn)為圓心的圓與直線相切.過(guò)點(diǎn)的動(dòng)直線與圓A相交于M,N兩點(diǎn),Q是的中點(diǎn),直線與相交于點(diǎn)P.(1)求圓A的方程;(2)當(dāng)時(shí),求直線的方程.18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足S=(a2+c2﹣b2).(1)求角B的大??;(2)若邊b=,求a+c的取值范圍.19.已知函數(shù).(1)求函數(shù)的單調(diào)減區(qū)間.(2)求函數(shù)的最大值并求取得最大值時(shí)的的取值集合.(3)若,求的值.20.已知關(guān)于的函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.21.已知點(diǎn),圓.(1)求過(guò)點(diǎn)M的圓的切線方程;(2)若直線與圓相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由題意可得在上為減函數(shù),列出不等式組,由此解得的范圍.【詳解】∵函數(shù)在區(qū)間上是增函數(shù),∴函數(shù)在上為減函數(shù),其對(duì)稱軸為,∴可得,解得.故選:C.【點(diǎn)睛】本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.2、C【解析】由,由,當(dāng)最大時(shí),最小,此時(shí)最小,,故選C.【點(diǎn)睛】本題除了做約束條件的可行域再平移求得正解這種常規(guī)解法之外,也可以采用構(gòu)造法解題,這就要求考生要有較強(qiáng)的觀察能力,或者采用設(shè)元求出構(gòu)造所學(xué)的系數(shù).3、B【解析】即對(duì)任意都成立,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),歸納得:故選點(diǎn)睛:根據(jù)已知條件運(yùn)用分組求和法不難計(jì)算出數(shù)列的前項(xiàng)和為,為求的取值范圍則根據(jù)為奇數(shù)和為偶數(shù)兩種情況進(jìn)行分類討論,求得最后的結(jié)果4、D【解析】分析:由條件求出圓心坐標(biāo)和半徑的值,從而得出結(jié)論.詳解:圓心坐標(biāo)為(1,2),半徑r==5,故所求圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=25.故選D.點(diǎn)睛:本題主要考查求圓的標(biāo)準(zhǔn)方程的方法,求出圓心坐標(biāo)和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.5、B【解析】試題分析:由圖象知,,,,,得,所以,為了得到的圖象,所以只需將的圖象向右平移個(gè)長(zhǎng)度單位即可,故選D.考點(diǎn):三角函數(shù)圖象.6、B【解析】

根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)判斷.【詳解】∵,∴,∵,∴,又,∴,故選B.【點(diǎn)睛】本題考查對(duì)數(shù)函數(shù)的性質(zhì),掌握對(duì)數(shù)函數(shù)的單調(diào)性是解題關(guān)鍵.7、D【解析】

根據(jù)兩個(gè)球的表面積之比求出半徑之比,利用半徑之比求出球的體積比.【詳解】由題知,則.故選:D.【點(diǎn)睛】本題主要考查了球體的表面積公式和體積公式,屬于基礎(chǔ)題.8、B【解析】

利用正弦定理得到答案.【詳解】故答案為B【點(diǎn)睛】本題考查了正弦定理,意在考查學(xué)生的計(jì)算能力.9、C【解析】

利用線面、面面之間的位置關(guān)系逐一判斷即可.【詳解】對(duì)于A,若,,則平行、相交、異面均有可能,故A不正確;對(duì)于B,若,,,則垂直、平行均有可能,故B不正確;對(duì)于C,若,,,根據(jù)線面垂直的定義可知內(nèi)的兩條相交線線與內(nèi)的兩條相交線平行,故,故C正確;對(duì)于D,由C可知,D不正確;故選:C【點(diǎn)睛】本題考查了由線面平行、線面垂直判斷線面、線線、面面之間的位置關(guān)系,屬于基礎(chǔ)題.10、C【解析】

由題意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),將所求式子化為b的關(guān)系式,由基本不等式可得所求最小值.【詳解】直線l的方程為2x+3y=5,點(diǎn)P(a,b)在l上位于第一象限內(nèi)的點(diǎn),可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),則[(11﹣6b)+(9+6b)]()(7),當(dāng)且僅當(dāng)時(shí),即b,a,上式取得最小值,故選:C.【點(diǎn)評(píng)】本題考查基本不等式的運(yùn)用:求最值,考查變形能力和化簡(jiǎn)運(yùn)算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、-7【解析】

結(jié)合一元二次不等式和一元二次方程的性質(zhì),列出方程組,求得的值,即可得到答案.【詳解】由不等式的解集為,可得,解得,所以.故答案為:.【點(diǎn)睛】本題主要考查了一元二次不等式的解法,以及一元二次方程的性質(zhì),其中解答中熟記一元二次不等式的解法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、{x|-1<x<-}【解析】

觀察兩個(gè)不等式的系數(shù)間的關(guān)系,得出其根的關(guān)系,再由和的正負(fù)可得解.【詳解】由已知可得:的兩個(gè)根是和,且將方程兩邊同時(shí)除以,得,所以的兩個(gè)根是和,且解集是故得解.【點(diǎn)睛】本題考查一元二次方程和一元二次不等式間的關(guān)系,屬于中檔題.13、.【解析】

先由求出的值,再利用同角三角函數(shù)的基本關(guān)系式求出、即可.【詳解】因?yàn)闉榈诙笙藿?,且,所以,解得,再由及為第二象限角可得、,此時(shí).故答案為:.【點(diǎn)睛】本題主要考查兩角差的正切公式及同角三角函數(shù)的基本關(guān)系式的應(yīng)用,屬常規(guī)考題.14、80【解析】

由即可求出【詳解】因?yàn)槭堑缺葦?shù)列,所以,所以即故答案為:80【點(diǎn)睛】本題考查的是等比數(shù)列的性質(zhì),較簡(jiǎn)單15、【解析】

將向量進(jìn)行等量代換,然后做出對(duì)應(yīng)圖形,利用平面向量基本定理進(jìn)行表示即可.【詳解】解:設(shè),則根據(jù)題意可得,,如圖所示,作,垂足分別為,則又,,故答案為.【點(diǎn)睛】本題考查了平面向量基本定理及其意義,兩個(gè)向量的加減法及其幾何意義,屬于中檔題.16、【解析】

計(jì)算出的值,然后利用誘導(dǎo)公式可求得的值.【詳解】,,則,因此,.故答案為:.【點(diǎn)睛】本題考查利用誘導(dǎo)公式求值,同時(shí)也考查了同角三角函數(shù)基本關(guān)系的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).(2)或【解析】

(1)圓心到切線的距離等于圓的半徑,從而易得圓標(biāo)準(zhǔn)方程;(2)考慮直線斜率不存在時(shí)是否符合題意,在斜率存在時(shí),設(shè)直線方程為,根據(jù)垂徑定理由弦長(zhǎng)得出圓心到直線的距離,現(xiàn)由點(diǎn)(圓心)到直線的距離公式可求得.【詳解】(1)由于圓A與直線相切,∴,∴圓A的方程為.(2)①當(dāng)直線與x軸垂直時(shí),易知與題意相符,使.②當(dāng)直線與x軸不垂直時(shí),設(shè)直線的方程為即,連接,則,∵,∴,由,得.∴直線,故直線的方程為或.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,解題關(guān)鍵是垂徑定理的應(yīng)用,在圓中與弦長(zhǎng)有關(guān)的問(wèn)題通常都是用垂徑定理解決.18、(1)B=60°(2)【解析】

(1)由三角形的面積公式,余弦定理化簡(jiǎn)已知等式可求tanB的值,結(jié)合B的范圍可求B的值.(2)由正弦定理,三角函數(shù)恒等變換的應(yīng)用可求a+csin(A),由題意可求范圍A∈(,),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求解.【詳解】(1)在△ABC中,∵S(a2+c2﹣b2)acsinB,cosB.∴tanB,∵B∈(0,π),∴B.(2)∵B,b,∴由正弦定理可得1,可得:a=sinA,c=sinC,∴a+c=sinA+sinC=sinA+sin(A)=sinAcosAsinAsin(A),∵A∈(0,),A∈(,),∴sin(A)∈(,1],∴a+csin(A)∈(,].【點(diǎn)睛】本題考查了正弦定理、余弦定理、三角形面積計(jì)算公式及三角函數(shù)恒等變換的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.19、(1).(2)最大值是2,取得最大值時(shí)的的取值集合是.(3)【解析】

(1)利用三角恒等變換化簡(jiǎn)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)的單調(diào)區(qū)間;(2)根據(jù)的解析式以及正弦函數(shù)的最值,求得函數(shù)的最大值,以及取得最大值時(shí)的的取值集合;(3)根據(jù)題設(shè)條件求得,再利用二倍角的余弦公式求的值.【詳解】(1),令,解得,所以的單調(diào)遞減區(qū)間為;(2)由(1)知,故的最大值為2,此時(shí),,解得,所以的最大值是2,取得最大值時(shí)的的取值集合是;(3),即,所以,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的恒等變換,考查正弦型函數(shù)的圖象和性質(zhì),熟練掌握正弦型函數(shù)的圖象和性質(zhì)是答題關(guān)鍵,屬于中檔題.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由時(shí),根據(jù),利用一元二次不等式的解法,即可求解;(Ⅱ)由對(duì)任意的恒成立,得到,利用基本不等式求得最小值,即可求解.【詳解】(Ⅰ)由題意,當(dāng)時(shí),函數(shù),由,即,解得或,所以不等式的解集為.(Ⅱ)因?yàn)閷?duì)任意的恒成立,即,又由,當(dāng)且僅當(dāng)時(shí),即時(shí),取得最小值,所以,即實(shí)數(shù)的最大值為.【點(diǎn)睛】本題主要考查了一元二次不等式的求解,以及基本不等式的應(yīng)用,其中解答中熟記一元二次不等式的解法,以及合理利用基本不等式求得最小值是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.21、(1)或.(2)【解析】

(1)分切線的斜率不存在與存在兩種情況分析.當(dāng)斜率存在時(shí)設(shè)方程為,再根據(jù)圓心到直線的距離等于半徑求解即可.(2)利用垂

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論