世界銀行 -中低收入國(guó)家的國(guó)內(nèi)貿(mào)易成本_第1頁(yè)
世界銀行 -中低收入國(guó)家的國(guó)內(nèi)貿(mào)易成本_第2頁(yè)
世界銀行 -中低收入國(guó)家的國(guó)內(nèi)貿(mào)易成本_第3頁(yè)
世界銀行 -中低收入國(guó)家的國(guó)內(nèi)貿(mào)易成本_第4頁(yè)
世界銀行 -中低收入國(guó)家的國(guó)內(nèi)貿(mào)易成本_第5頁(yè)
已閱讀5頁(yè),還剩61頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PublicDisclosureAuthorizedPublicDisclosureAuthorized

PolicyResearchWorkingPaper10789

Intra-nationalTradeCostsinLow-andMiddle-IncomeCountries

BernardoDíazdeAstarloaNinoPkhikidze

WORLDBANKGROUP

TransportGlobalPracticeJune2024

PolicyResearchWorkingPaper10789

Abstract

Casualobservationsuggeststhatintra-nationaltradecostsremainhighinlow-andmiddle-incomecountries.Preciselyestimatingthemiscrucialforguidingpoliciesaimedatoptimizingeconomicefficiencywithinacountry’sborders.Thispaperestimatesintra-nationaltradecostsforsixlow-andmiddle-incomecountriesinAfricaandEasternEurope:Kenya,Madagascar,Nigeria,Rwanda,Tanzania,andGeor-gia.Theanalysisexploitsunit-levelpricedatacollectedbycountries’nationalstatisticalofficesforconsumerprice

indexcalculationpurposes.Itappliesthepricedifferentialmethodology,whichaimsatestimatingtradecostswhileaccountingforthepossibilityofimperfectcompetitionamongintermediaries,controllingforspatialvariationinmarkups.Thefindingsshowthattheintra-nationaltradecostsinthesampleofcountriesarebetween2.5and14timeslargerthanpreviousestimatesfortheUnitedStatesusingthesamemethodology.

ThispaperisaproductoftheTransportGlobalPractice.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat

/prwp.Theauthorsmaybecontactedatbernardo

.diazastarloa@economicas.uba.arandnpkhikidze@.

ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.

ProducedbytheResearchSupportTeam

Intra-nationalTradeCostsinLow-andMiddle-IncomeCountries*

BernardoD′?azdeAstarloatNinoPkhikidze?

Keywords:Tradecosts,Pricedifferentialmethodology,Traveldistance,Kenya,Madagascar,Nigeria,Rwanda,Tanzania,Georgia.

JELclassiication:R12,F1,O1,D02.

*ThispaperwaspreparedasbackgroundresearchfortheWorldBank’sShrinkingEconomicDistanceFlagshipReport.IgnacioCaroSol′?sprovidedsuperbresearchassistance.Forhelpandassistanceinaccessingpricedata,wethanktheWorldBank’scountryteamsandthenationalstatisticsofficesoftheresearchcountries.WehavebenefitedgreatlyfromdiscussionswithMatiasHerreraDappe,RomanZarate,TheophileBougna,AlejandroMolnar,MathildeLebrand,AigaStokenberga,andtheparticipantsofWorldBank’sWorkshoponShrinkingEconomicDistance.Thefindings,interpretations,andconclusions

exp-ierilley,UniversityofBuenosAires.Email:

bernardo.diazastarloa@economicas.uba.ar.

?WorldBank.Email:

npkhikidze@.

2

1Introduction

Internationaltradecostshavefallendrasticallyinthelastdecades.However,intra-national(i.e.within-country)tradecostsstillremainhighinlow-andmiddle-incomecountries.Quantifyingtradecostsandtheircomponentsiscrucialsincelowertradecostscanincreaseefficiency,improvethewelfareofhouseholdsandfirms,anddrivestructuraltransforma-

tionthroughincreasedtradeopportunities(Sotelo,

2019;

FajgelbaumandRedding,

2014;

CostinotandDonaldson,

2016)

.Byunderstandingthecostsassociatedwithdomestictrade,policymakerscanidentifybarriershinderingmarketaccessandformulatetargetedpoliciestoreducetheseobstacles.

Low-andmiddle-incomecountriesareoftencharacterizedbymanybarriersaffectingthefreeflowofgoodswithintheirborders,suchaspoorroadconditions,oldtransportfleet,andpoorlogistics.Theseaffecttradeflowsandlimitthegainsofreducedinterna-tionaltradecostsandincreasedregionalintegration.Remoteregionstendtobeespeciallyisolatedoftenduetohightravelcosts,includinghightraveltime.Inturn,highertrans-portationcostsareoftenpassedontoconsumersintheformofincreasedprices.Therefore,householdsandfirmsintheseareasfacehigherspatialpricegaps,whichlimitsthevariety

ofgoodstheycanchoosefromandreducesdisposableincome(Aggarwal,

2018;

Martin,

MaynerisandTheophile,

2020)

.

Despitetherecentisolatedattemptstostudytheextentofintra-nationaltradecosts,1

thereisagapintheliteratureonthecross-countrycomparisonofwithin-countrytradecosts.

Inthispaperweestimateintra-nationaltradecostsforsixlow-andmiddle-incomecountriesinAfricaandEasternEurope:Kenya,Madagascar,Nigeria,Rwanda,Tanza-niaandGeorgia.Weexploitmicrodatacollectedbycountries’nationalstatisticaloffices(NSO)forconsumerpriceindex(CPI)calculationpurposes.

Therearetwomainestimation-basedapproachesintheliteraturetoestimatetrade

costs,thegravityapproachandthepricedifferentialapproach(Co?sar,

2022)

.Thegravityapproachlooksattheimpactofvaryingtraveldistanceortraveltimeontradeflows,whichareinverselyproportionaltoeachother

.2

UsinggravityestimationtoestimatetheimpactoftraveldistanceontradebetweenColombiancities,

Duranton

(2015)estimates

thatincreasingthetraveldistancebetweenthemby10%decreasestradeflowsby7%andweightby6%.

Thepricedifferentialmethodcombinesdataonpricesfromdifferentmarketsorcitieswithvariablesthatarethoughttoaffectthecostofshippinggoodsbetweenlocations.Usingthesedata,onecancomputepricedifferencesacrossspace(spatialpricegaps)and

assesshowdifferentcostshiftersaffectthesedifferences.Distancebetweenwherethe

1See,forexample,

AtkinandDonaldson

(2015)ontheestimatesforEthiopia,Nigeria,andtheU.S

.,and

Bougna,Ewane,JonesandKondylis

(2020)onRwanda

.

2HeadandMayer

(2014)summarizetheliteratureongravityequationsandprovideanextensive

overviewofbest-practicemethodsandastep-by-stepcookbook.

3

productisproducedorsourcedfrom(originlocations)andwhereitisfinallysoldbyretailers(destinationlocations)typicallysummarizesthecontributionoftransportcoststooveralltradecosts.However,theremaybeothervariablesthatcanbecorrelatedwithdistancewhichcanalsoaffecttradecosts,suchastheextentofcompetitionbetween

logisticsoperators,distributorsorretailers(AtkinandDonaldson,

2015)orwithin-country

“border-effects”(Borraz,Cavallo,RigobonandZipitria,

2016)

.

Inthispaper,wefollowtheprice-differentialapproachandapplythemethodologydevelopedby

AtkinandDonaldson

(2015),whichaimsatestimatingtradecostswhile

takingintoaccountthepossibilityofimperfectcompetitionamongintermediaries,con-trollingforspatialvariationinmarkups.Wefindthatintra-nationaltradecostsinoursampleofcountriesarebetween2.5and14timeslargerthanpreviousestimatesfortheU.S.by

AtkinandDonaldson

(2015)usingthesamemethodology.

Thispaperrelatestoagrowingliteraturethatattemptstoestimateintra-nationaltradecosts.Givenitshistoricallyhightransportcosts,Africa,andinparticularSub-SaharanAfrica,hasbeenthefocusofseveralpapersstudyingtradeandtransportprices.

Bougnaetal.

(2020)estimateintra-nationaltradecostsinRwandausingdataonrural

marketsandfindthemtobe10timeshigherthanintheU.S.Theyalsofindthatmarkupsarehigherinlocationswithfewertraders.

Mayneris,MartinandTheophile

(2020)doc

-umentspatialdifferencesinthecostoflivingacrossEthiopiancitiesandfindthatmoreremotecitiesshowsignificantlyhigherprices,lessproductavailability,andahighercostofliving.

Porteous

(2019)takesadifferentmethodologicalapproachto

AtkinandDonaldson

(2015)toestimateintra-nationaltradecostsinSub-SaharanAfrica

.Thepaperfocusesonstaplecerealgrainstradedbetween230largeregionalhubsin42countries,andquantifiestradecostsbyestimatingastructuralmodelthatfeaturescompetitivetraders(i.e.,ab-stractingfrommarkups),grainconsumption,storage,andtrade.Theresultsin

Porteous

(2019)suggesttradecoststhatarequalitativelysimilarbuthigherinmagnitudetothose

estimatedin

AtkinandDonaldson

(2015),althoughtheformerpotentiallyincludenon

-distancedependentfactors.Specifically,themediantradecostisover5timeshigherthaninternationalbenchmarkfreightrates.Inacounterfactualwheretradecostsonoverlandlinksarereducedtolevelssimilartotherestoftheworld,grainpricesfall30%onaverageandaggregatewelfareincreasesby1.6%ofGDP.

TeravaninthornandRaballand

(2009)

estimatetradecostsusingtruckersurveysintheU.S.andalongseveralmajortransportcorridorsinSub-SaharanAfricaandfind1.88to3.28timeshighertradecostscomparedtotheU.S.,whicharelowerthantheresultsof

AtkinandDonaldson

(2015)

.Intermsofthetradecostsinhigh-incomecountries,

Agnosteva,AndersonandYotov

(2019)use

gravitymodeltechniquestounderstandtheeffectsofintra-regional,inter-regionalandinternationalfrictionsontradeflowsinCanadianprovinces,andfindthatfurtherandless-developedregionstendtohaverelativelylowinternalfrictionsandlargeborderef-fects,whileeconomicallymoredevelopedandcentralregionsshowrelativelylowborderbarriers.

4

2Data

Oursamplecovers6low-andmiddle-incomecountriesinAfricaandEasternEurope:

Kenya,Madagascar,Nigeria,Rwanda,TanzaniaandGeorgia.Inordertoapplythemethodologydevelopedby

AtkinandDonaldson

(2015),werequiretwosetsofdatafor

eachcountry.First,weneedpricedataonnarrowly-definedproductvarieties,withob-servationsspanningmultiplelocationswithineachcountryatamonthlyfrequencyoverseveralyears.Second,weneedthelocationsinwhichproductvarietieswereproducedorfromwhichtheywereimported.Thelatterallowsfortheidentificationoftradingpairsandthecorrespondingdirectionoftradefromorigintodestinationlocations.Inthissec-tion,webrieflydescribehowweconstructthesedata.Appendix

A

includesadditionaldetailsaboutthedatapreparationprocess.

2.1Pricedata

OurpricedatacomefromCPImicrodataprovidedtousbyNSOsineachcountryin

oursample.NSOscollectpricedatafromapredefinedlistofproductvarieties(includinggoodsandservices),designedtocapturetheconsumptionbasketofatypicalhousehold,atspecifiedlocations.Apartfromthemonthlypricequote,theinformationprovidedtousbyNSOsincludesaproductdescription,insomecasesincludingthebrandandpresentation(e.g.,“Coca-Cola,canned,500ml”or“Bodylotion,Nivea,200ml”),thenameofthelocationwherethepricewascollected,and,occasionally,thenameofaproducerorthecountryfromwheretheproductwasimported.

Werestrictthechoiceofproductstonarrowlydefinedvarieties,i.e.,thoseforwhichwecanobserveadetailedproductdescriptionandabrand.Formostcountriesinoursample,pricesareatthetownorcitylevel,withtheexceptionofRwanda,wherepricesarecollectedatthe(moreaggregated)districtlevel.

Theanalysisinsection

4

usescleansamplesofpricedata,obtainedbyapplyingacleaningalgorithmtotherawdata.Moreover,asin

AtkinandDonaldson

(2015),we

convertallpricestoconstantU.S.dollarsbydeflatingthemusinginflationratesatoriginlocationsandbilateralnominalexchangeratesbetweenlocalcurrenciesandtheU.S.dollar.ThecleaninganddeflatingproceduresaredescribedinAppendix

A.

2.2Products’originlocations

Theestimationstrategyproposedby

AtkinandDonaldson

(2015)dependsonprecisely

identifyinglocationswhereaproductisproducedorimported.Todothis,wesearchovertheInternettodeterminewhichmanufacturersproduceeachbrandandwheretheirfactoriesarelocated.Forimportedgoods,weidentifythemainportsofentryineach

5

countryandtheirlocationstoassignimportedproductstothem

.3

Forlandlockedcoun-tries,weidentifyportsatneighboringcountriesthroughwhichmostimportscome(e.g.,insomecases,countriesareinconflictwithsomeborderingcountriesandimportsdonotcomethroughthem).Then,weidentifythebordercrossingsthatareclosesttothoseports.Finally,wegeocodealllocationstodeterminetheirlatitudeandlongitude.Foreachproduct,wedefinea“tradingpair”asanoriginandadestinationlocation.

Conditionalonbeingnarrowlydefined,weconsiderproductsthatarebroadlyavailableacrosslocationsandperiodsinoursample.Specifically,werestrictsamplestoproductsforwhichpricesareobservedintheproducts’sourceanddestinationlocationsinmorethansixmonths

.4

Table

1

describesthemainfeaturesoftheresultingsamplesweconsiderforeachcountry.Thenumberofproductsrangesfrom9inMadagascarto43inRwanda.Thefulllistofproductsforeachcountry,includingtheirbrands,presentations,andmanufacturers,isincludedintheAppendix

A.2.

Thenumberofdestinationlocations(markets,cities,ordistricts)rangesfrom6inGeorgiato38inNigeria.Figure

1

showsthelocationsforeachcountryinoursample,aswellasthemajorroadsconnectingthem,andindicatesthelocationwhereaproductismanufacturedorimported,onwhichweelaborateinsection

2.2.5

Table

1

alsoshowstheperiodscoveredbyeachcountrysample.WiththeexceptionoftheNigeriasample,whichstartsinJanuary2001,allsamplesstartafterJanuary2010.ThelongestpanelcorrespondstoMadagascarandcoverstheperiodfromJanuary2010toApril2021.TheshortestpanelistheoneforKenya,coveringfromOctober2018toJanuary2022.

Averageoriginprices,pricegapsbetweenoriginanddestinationlocations,anddis-tances,arereportedinTable

2.

Table1:Mainfeaturesandcoverageofthedata

Country

No.ofproducts

Origins

Destinations

Typeoflocations

Startperiod

Endperiod

Kenya

20

10

32

Cities

Oct2018

Jan2022

Madagascar

9

3

7

Majorcities

Jan2010

Apr2021

Nigeria

25

5

38

Cities

Jan2001

Jul2010

Rwanda

43

4

13

Districts

Jan2013

Dec2020

Tanzania

32

5

20

Cities

Jan2012

Apr2021

Georgia

21

4

6

Cities

Jan2012

Dec2020

Notes:thistabledescribesthemainfeaturesofthedatasetsforeachcountryinoursample.Source:

authors’elaborationbasedonCPIdatafromcountries’NSO.

3OurmainsourcesareLogcluster,awikiwithdetailedlogisticsinformationabouteachcountry,andWorldPortSource.

4Asdiscussedinsection

3.2,estimationofpass-throughratesreliesonvariationofpricesovertimefor

eachproduct-destinationpair.

5ThedataunderlyingthemapsaretakenfromtheGlobalRoadsInventoryProject(GRIP),availableat

/download-grip-dataset.

6

(a)Kenya(b)Madagascar

(c)Nigeria(d)Rwanda

(e)Tanzania(f)GeorgiaFigure1:Mapsofmarketlocations

Notes:thisfigureshowsmarketlocationsforeachcountryinoursample,aswellasmajorroadsconnectinglocations,indicatingoriginlocations(productionlocationsorportsofentry).Source:authors’elaborationbasedontheGRIPdataset.

7

2.3Distancebetweenlocations

Thebaselinemeasureofdistanceweemployisgeodesicdistance,thatis,theshortestdis-tancebetweentwolocations.Table

2

reportsthemean,minimumandmaximumgeodesic

distancebetweenoriginanddestinationlocations.

Alternatively,following

AtkinandDonaldson

(2015),weusetwoadditionalmeasures

tocontrolforquantityandqualitydifferencesincountries’roadnetworks.Thefirst,whichaimsatcapturingquantitydifferences,isthedistancebetweentwolocationsalongthequickestroute,ascalculatedbyGoogleMaps.Figure

1

showstheroadnetworkineachcountry.Thesecond,whichshouldcapturequalitydifferences,isthetimeittakestocompleteatripbetweentwolocationsfollowingthequickestroute,alsofromGoogleMaps.

Table2:Descriptivestatistics

KE

MG

NG

RW

TZ

GE

Meanoriginprice

2.306

0.922

0.902

2.328

0.898

2.577

(1.833)

(0.451)

(1.223)

(2.993)

(0.840)

(2.775)

Meandestinationprice

2.357

0.918

0.960

2.302

0.910

2.584

(1.984)

(0.520)

(1.386)

(2.980)

(1.001)

(2.729)

Meanpricegap(tradingpairs)

0.052

-0.004

0.058

-0.025

0.013

0.007

(0.454)

(0.264)

(0.433)

(0.480)

(0.662)

(0.454)

Geodesicdistance(km)

279

414

597

80

493

170

(208)

(224)

(292)

(35)

(276)

(79)

Logdistancetooriginlocation

5.305

5.858

6.214

4.273

5.943

5.001

(0.870)

(0.605)

(0.691)

(0.499)

(0.927)

(0.551)

Min.distance(tradingpairs,km)

20.6

114.3

34.2

7.9

2.2

50.9

Max.distance(tradingpairs,km)

915.8

874.9

1,254.8

152.9

1,362.6

318.5

Numberoftradingpairs

134

18

153

30

85

20

Observations

9,280

5,997

48,379

26,215

50,583

6,173

Notes:Thistablepresentsdescriptivestatisticsforoursampleofcountries.Thefirstandsecondrowsreportthemeanpriceatthefactorylocation(orlocationoftheportofentry)andthemeanpriceatdestinations.Thethirdrowreportspricegapsusingdataformtradingpairs.AllpricesaredeflatedbyinflationattheoriginlocationandthenconvertedtoU.S.dollarsusingtheexchangerateprevailingduringthebaseperiod.Thefourthrowreportsmeangeodesicdistancebetweentradingpairsmeasuredinkilometers.Thefifthrowreportstheaveragedistancetotheoriginlocation(inlogkilometers).Thefifthandsixthrowsreporttheminimumandmaximumdistancesbetweentradingpairs,respectively.Theseventhrowreportsthenumberoftradingpairs.Thelastrowreportsthenumberofobservations.Source:Authors’estimatesbasedonnationalCPIdataanddistancescalculatedusingGoogle.

3Methodologicalframework

Thetheoreticalframeworkunderlyingourestimationstrategyisbasedonthemodelde-velopedby

AtkinandDonaldson

(2015)

.Inthissection,weoutlinethemainelements

8

andintuitionofthetheory.Interestedreaderscanfindadditionaldetailsandproofsinthatpaper.

3.1Theory

Theeconomyischaracterizedbymultiplemarkets(orlocations)indexedbydandasingleconsumptiongood.TheinversedemandforthisproductineachmarketisgivenbyP(Qd,Dd),whereQdisquantitydemandedandDdcharacterizesdemandconditionsinlocationd.Productionofthegoodcantakeplaceathomeorabroadatasinglefactory.Whatmattersforthemodelisthedomesticoriginoftheproduct,denotedo.Ifproducedathome,oindicatesthefactorylocation;ifimported,oindicatestheportorbordercrossingthroughwhichtheproductenteredthecountry.

IdenticaldomesticintermediariesbuytheproductinwholesalemarketsattheoriginlocationatpricePoandsellittoconsumersind,effectivelyactingasretailersaswell.Intermediaries’tradingtechnologyischaracterizedbytheirtotalcosts,Cd(qd),whereqdisthequantitytradedfromotod.Intheextensionofthemodeltomanyproducts,wefurtherassumethateachproductissourcedfromonelocationonly,sothatocanbeomittedfromthesubscriptinqd.TotalcostsincludeafixedcostFdandamarginalcostcd.Themarginalcostincludesthecostofbuyingthegoodattheorigin,givenbyitspricePo,andthecostoftradingthefoodfromotod,givenbyτ(Xd),whereXdisavectorofcostshifters,includingdistanceand,potentially,otherfactorssuchasroadqualityanddestination-specificretailcosts.Totalcostsarethengivenby

C(qd)=Fd+[Po+τ(Xod)].

Anintermediarychoosequantitiesqdtomaximizeprofitsinanimperfectlycompetitivemarket,subjecttotheperceivedresponseofotherintermediaries.Thereisnoentryofintermediariesand,undercertainassumptions,thefirst-orderconditionsoftheintermedi-ary’soptimizationproblemimplythatpricegapsbetweentheoriginandthedestinationlocationsaregivenby:

?Pod≡Pd?Po=τ(Xod)+μd(τod,Dd,?d)(1)

whereμdisthemark-upchargedbytheintermediaryatlocationd,whichdependsontradecosts,demandconditionsatd,andacompetitivenessindex?d,whichinturndependsonthenumberofintermediariesandtheextentofstrategicinteractionsamongthem.

From(1),variationintradecostsshiftersimplies:

whereρod≡1+(?μ/?τod)isthepass-throughrate,thatis,theeffectoftradecostson

9

prices.Itcanbeshownthat,inthisframework,thepass-throughratedependsontheelasticityoftheslopeofthedemandscheduleandcompetitiveconditions(?d).InourempiricalanalysisinSection

4,themaintradecostshifterofinterest

xodisdistance.Tosimplifytheexposition,inwhatfollowswesetXod=xod.

Equation(2)illustratesthreesourcesofbiasthatcanarisewhenaimingatidentifying

tradecostsfromspatialpricegaps:(1)incompletepass-through(ρod1),(2)variationindemandconditionsacrosslocations,and(3)variationintheextentofcompetitionacrosslocations.Underadditionalassumptions,thepass-throughratecancontrolforthissourcesofbias.Inparticular,undertheassumptionthatthepass-throughrateisindependentofquantities

qd,equation(2)simplifiesto

?Pod=ρodτ(xd)+(1?ρod)(ad?Po),(3)

whereadisalocaldemandshifter.Underthisspecification,ρodandthelocaldemandshifteradaresufficienttocontrolforlocalcompetitiveanddemandconditions.

Thefollowingsubsectionexplainshowthistheoreticalframeworkcanguidethespec-ificationofempiricalmodelstoestimatetheeffectofdistanceontradecostsexploitingorigin-destinationpricegaps,controllingforotherfactorsthatcorrelatewithdistanceandcouldaffectpricedifferentialsthroughvariationofmarkupsacrosslocations.Section

4

describesthemethodsusedtoestimatethesemodels.

3.2Estimationstrategy

Theestimationstrategyexploitspricedataonmultipleproductsksourcedfromlocationsoandsellingatlocationsdatdifferenttimeperiodst.Withvariationacrossproducts,

destinations,originlocations,andtime,equation(3)impliesthefollowingrelationship

betweenproductpricesattheoriginandthedestination:

Pt=ρdP+ρdτ(xdt)+(1?ρd)at,(4)

wherewehavefurtherassumedthatthepass-throughrateremainsfixedovertime

.6

Thelatterassumptionholdsiflocaldemandelasticitiesandcompetitiveconditions(e.g.,entryofnewintermediaries)areconstantovertime.

Inequation(4),tradecosts

τ(xdt),pass-throughratesρdanddemandshiftersat

arenotobservable.Thestrategyaimsatidentifyingτ(xdt)andρdbasedonvariation

inpricesovertimeandspace,anddistancebetweenlocations,whiletreatingatasun-

observedheterogeneityandcapturingitthroughasetoffixedeffects.Forthisreason,preciselyidentifyingoriginlocationsiskeyfortheaccuracyoftheestimates.

Theestimationprocedureinvolvestwosteps,asfollows:

6Itisinfeasibletoestimateseparatepass-throughratesforeachperiodsincethenumberofparameterstoestimatewouldequalthenumberofobservations.

10

1.Pass-throughrates.Inthefirststep,weproduceestimatesofpass-throughrates

dbyregressingdestinationpricesonoriginprices,controllingfortradecostsand

demandshifters.Specifically,weestimatetheparametersofthefollowingmodel:

Pt=ρdP+γ+γt+εdt,(5)

whereγareproduct-destinationfixedeffects,γtisaproduct-destinationlinear

timetrend,andεdtisanunobservederrortermthatcapturesshockstotradecosts

andlocaldemandshifters.

2.Tradecosts.Inthesecondstep,werecoverestimatesoftradecosts(xodt)using

pass-throughestimatesfromthefirststep.Given(unbiased)estimatesd,wecan

manipulateequation(4)toderiveandexpressionforan“adjustedpricegap”:

Computingthis“adjustedpricegap”allowsfortheestimationofτ(xdt)when

markupsarepositiveandvaryacrosslocations,i.e.,ρd1.Localdemandcon-

ditionsarecontrolledforbyincludingfixedeffectsinteractedwiththeadjustment

factor,andtradecostsaredecomposedasτ(xdt)=f(xod)+χdt,whereχdtcaptures

unobservabletime-varyingfactorsthataffecttradecosts.Theestimatingmodelthen

becomes(7)

whereαareproduct-timefixedeffects,αdaredestinationfixedeffects,andξdt

capturesunobservedshockstolocaldemandandtradecosts.InSection

4.3,we

specifythefunctionf(xod)thatwetaketothedatatorecovertheeffectofdistanceontradecosts.

4Estimatesofintra-nationaltradecosts

Thissectionpresentsestimationresultstoquantifytherelationshipbetweendistanceandintra-nationaltradecostsinoursampleoflow-andmiddle-incomecountries.Usingthenotationintroducedintheprevioussection,weattempttoestimate?τ(xod)/?xod,wherexodisoneofthedifferentmeasuresofdistancedescribedinsection

2.3.

Ultimately,weapplythestrategydescribedinsection

3.2,whichaimsatestimatingthisrelationship

usingdataaboutpricegapsacrosslocations,controllingforvariationinmarkupsacrosslocations.Beforeturningtothatexercise,forbenchmarkingpurposes,wefirstpresentestimatesthatabstractfromvariationinmarkups.

4.1Spatialpricegaps

Underthetheoreticalframeworkdescribedinsection

3.1,ifm

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論