




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10789
Intra-nationalTradeCostsinLow-andMiddle-IncomeCountries
BernardoDíazdeAstarloaNinoPkhikidze
WORLDBANKGROUP
TransportGlobalPracticeJune2024
PolicyResearchWorkingPaper10789
Abstract
Casualobservationsuggeststhatintra-nationaltradecostsremainhighinlow-andmiddle-incomecountries.Preciselyestimatingthemiscrucialforguidingpoliciesaimedatoptimizingeconomicefficiencywithinacountry’sborders.Thispaperestimatesintra-nationaltradecostsforsixlow-andmiddle-incomecountriesinAfricaandEasternEurope:Kenya,Madagascar,Nigeria,Rwanda,Tanzania,andGeor-gia.Theanalysisexploitsunit-levelpricedatacollectedbycountries’nationalstatisticalofficesforconsumerprice
indexcalculationpurposes.Itappliesthepricedifferentialmethodology,whichaimsatestimatingtradecostswhileaccountingforthepossibilityofimperfectcompetitionamongintermediaries,controllingforspatialvariationinmarkups.Thefindingsshowthattheintra-nationaltradecostsinthesampleofcountriesarebetween2.5and14timeslargerthanpreviousestimatesfortheUnitedStatesusingthesamemethodology.
ThispaperisaproductoftheTransportGlobalPractice.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp.Theauthorsmaybecontactedatbernardo
.diazastarloa@economicas.uba.arandnpkhikidze@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
Intra-nationalTradeCostsinLow-andMiddle-IncomeCountries*
BernardoD′?azdeAstarloatNinoPkhikidze?
Keywords:Tradecosts,Pricedifferentialmethodology,Traveldistance,Kenya,Madagascar,Nigeria,Rwanda,Tanzania,Georgia.
JELclassiication:R12,F1,O1,D02.
*ThispaperwaspreparedasbackgroundresearchfortheWorldBank’sShrinkingEconomicDistanceFlagshipReport.IgnacioCaroSol′?sprovidedsuperbresearchassistance.Forhelpandassistanceinaccessingpricedata,wethanktheWorldBank’scountryteamsandthenationalstatisticsofficesoftheresearchcountries.WehavebenefitedgreatlyfromdiscussionswithMatiasHerreraDappe,RomanZarate,TheophileBougna,AlejandroMolnar,MathildeLebrand,AigaStokenberga,andtheparticipantsofWorldBank’sWorkshoponShrinkingEconomicDistance.Thefindings,interpretations,andconclusions
exp-ierilley,UniversityofBuenosAires.Email:
bernardo.diazastarloa@economicas.uba.ar.
?WorldBank.Email:
npkhikidze@.
2
1Introduction
Internationaltradecostshavefallendrasticallyinthelastdecades.However,intra-national(i.e.within-country)tradecostsstillremainhighinlow-andmiddle-incomecountries.Quantifyingtradecostsandtheircomponentsiscrucialsincelowertradecostscanincreaseefficiency,improvethewelfareofhouseholdsandfirms,anddrivestructuraltransforma-
tionthroughincreasedtradeopportunities(Sotelo,
2019;
FajgelbaumandRedding,
2014;
CostinotandDonaldson,
2016)
.Byunderstandingthecostsassociatedwithdomestictrade,policymakerscanidentifybarriershinderingmarketaccessandformulatetargetedpoliciestoreducetheseobstacles.
Low-andmiddle-incomecountriesareoftencharacterizedbymanybarriersaffectingthefreeflowofgoodswithintheirborders,suchaspoorroadconditions,oldtransportfleet,andpoorlogistics.Theseaffecttradeflowsandlimitthegainsofreducedinterna-tionaltradecostsandincreasedregionalintegration.Remoteregionstendtobeespeciallyisolatedoftenduetohightravelcosts,includinghightraveltime.Inturn,highertrans-portationcostsareoftenpassedontoconsumersintheformofincreasedprices.Therefore,householdsandfirmsintheseareasfacehigherspatialpricegaps,whichlimitsthevariety
ofgoodstheycanchoosefromandreducesdisposableincome(Aggarwal,
2018;
Martin,
MaynerisandTheophile,
2020)
.
Despitetherecentisolatedattemptstostudytheextentofintra-nationaltradecosts,1
thereisagapintheliteratureonthecross-countrycomparisonofwithin-countrytradecosts.
Inthispaperweestimateintra-nationaltradecostsforsixlow-andmiddle-incomecountriesinAfricaandEasternEurope:Kenya,Madagascar,Nigeria,Rwanda,Tanza-niaandGeorgia.Weexploitmicrodatacollectedbycountries’nationalstatisticaloffices(NSO)forconsumerpriceindex(CPI)calculationpurposes.
Therearetwomainestimation-basedapproachesintheliteraturetoestimatetrade
costs,thegravityapproachandthepricedifferentialapproach(Co?sar,
2022)
.Thegravityapproachlooksattheimpactofvaryingtraveldistanceortraveltimeontradeflows,whichareinverselyproportionaltoeachother
.2
UsinggravityestimationtoestimatetheimpactoftraveldistanceontradebetweenColombiancities,
Duranton
(2015)estimates
thatincreasingthetraveldistancebetweenthemby10%decreasestradeflowsby7%andweightby6%.
Thepricedifferentialmethodcombinesdataonpricesfromdifferentmarketsorcitieswithvariablesthatarethoughttoaffectthecostofshippinggoodsbetweenlocations.Usingthesedata,onecancomputepricedifferencesacrossspace(spatialpricegaps)and
assesshowdifferentcostshiftersaffectthesedifferences.Distancebetweenwherethe
1See,forexample,
AtkinandDonaldson
(2015)ontheestimatesforEthiopia,Nigeria,andtheU.S
.,and
Bougna,Ewane,JonesandKondylis
(2020)onRwanda
.
2HeadandMayer
(2014)summarizetheliteratureongravityequationsandprovideanextensive
overviewofbest-practicemethodsandastep-by-stepcookbook.
3
productisproducedorsourcedfrom(originlocations)andwhereitisfinallysoldbyretailers(destinationlocations)typicallysummarizesthecontributionoftransportcoststooveralltradecosts.However,theremaybeothervariablesthatcanbecorrelatedwithdistancewhichcanalsoaffecttradecosts,suchastheextentofcompetitionbetween
logisticsoperators,distributorsorretailers(AtkinandDonaldson,
2015)orwithin-country
“border-effects”(Borraz,Cavallo,RigobonandZipitria,
2016)
.
Inthispaper,wefollowtheprice-differentialapproachandapplythemethodologydevelopedby
AtkinandDonaldson
(2015),whichaimsatestimatingtradecostswhile
takingintoaccountthepossibilityofimperfectcompetitionamongintermediaries,con-trollingforspatialvariationinmarkups.Wefindthatintra-nationaltradecostsinoursampleofcountriesarebetween2.5and14timeslargerthanpreviousestimatesfortheU.S.by
AtkinandDonaldson
(2015)usingthesamemethodology.
Thispaperrelatestoagrowingliteraturethatattemptstoestimateintra-nationaltradecosts.Givenitshistoricallyhightransportcosts,Africa,andinparticularSub-SaharanAfrica,hasbeenthefocusofseveralpapersstudyingtradeandtransportprices.
Bougnaetal.
(2020)estimateintra-nationaltradecostsinRwandausingdataonrural
marketsandfindthemtobe10timeshigherthanintheU.S.Theyalsofindthatmarkupsarehigherinlocationswithfewertraders.
Mayneris,MartinandTheophile
(2020)doc
-umentspatialdifferencesinthecostoflivingacrossEthiopiancitiesandfindthatmoreremotecitiesshowsignificantlyhigherprices,lessproductavailability,andahighercostofliving.
Porteous
(2019)takesadifferentmethodologicalapproachto
AtkinandDonaldson
(2015)toestimateintra-nationaltradecostsinSub-SaharanAfrica
.Thepaperfocusesonstaplecerealgrainstradedbetween230largeregionalhubsin42countries,andquantifiestradecostsbyestimatingastructuralmodelthatfeaturescompetitivetraders(i.e.,ab-stractingfrommarkups),grainconsumption,storage,andtrade.Theresultsin
Porteous
(2019)suggesttradecoststhatarequalitativelysimilarbuthigherinmagnitudetothose
estimatedin
AtkinandDonaldson
(2015),althoughtheformerpotentiallyincludenon
-distancedependentfactors.Specifically,themediantradecostisover5timeshigherthaninternationalbenchmarkfreightrates.Inacounterfactualwheretradecostsonoverlandlinksarereducedtolevelssimilartotherestoftheworld,grainpricesfall30%onaverageandaggregatewelfareincreasesby1.6%ofGDP.
TeravaninthornandRaballand
(2009)
estimatetradecostsusingtruckersurveysintheU.S.andalongseveralmajortransportcorridorsinSub-SaharanAfricaandfind1.88to3.28timeshighertradecostscomparedtotheU.S.,whicharelowerthantheresultsof
AtkinandDonaldson
(2015)
.Intermsofthetradecostsinhigh-incomecountries,
Agnosteva,AndersonandYotov
(2019)use
gravitymodeltechniquestounderstandtheeffectsofintra-regional,inter-regionalandinternationalfrictionsontradeflowsinCanadianprovinces,andfindthatfurtherandless-developedregionstendtohaverelativelylowinternalfrictionsandlargeborderef-fects,whileeconomicallymoredevelopedandcentralregionsshowrelativelylowborderbarriers.
4
2Data
Oursamplecovers6low-andmiddle-incomecountriesinAfricaandEasternEurope:
Kenya,Madagascar,Nigeria,Rwanda,TanzaniaandGeorgia.Inordertoapplythemethodologydevelopedby
AtkinandDonaldson
(2015),werequiretwosetsofdatafor
eachcountry.First,weneedpricedataonnarrowly-definedproductvarieties,withob-servationsspanningmultiplelocationswithineachcountryatamonthlyfrequencyoverseveralyears.Second,weneedthelocationsinwhichproductvarietieswereproducedorfromwhichtheywereimported.Thelatterallowsfortheidentificationoftradingpairsandthecorrespondingdirectionoftradefromorigintodestinationlocations.Inthissec-tion,webrieflydescribehowweconstructthesedata.Appendix
A
includesadditionaldetailsaboutthedatapreparationprocess.
2.1Pricedata
OurpricedatacomefromCPImicrodataprovidedtousbyNSOsineachcountryin
oursample.NSOscollectpricedatafromapredefinedlistofproductvarieties(includinggoodsandservices),designedtocapturetheconsumptionbasketofatypicalhousehold,atspecifiedlocations.Apartfromthemonthlypricequote,theinformationprovidedtousbyNSOsincludesaproductdescription,insomecasesincludingthebrandandpresentation(e.g.,“Coca-Cola,canned,500ml”or“Bodylotion,Nivea,200ml”),thenameofthelocationwherethepricewascollected,and,occasionally,thenameofaproducerorthecountryfromwheretheproductwasimported.
Werestrictthechoiceofproductstonarrowlydefinedvarieties,i.e.,thoseforwhichwecanobserveadetailedproductdescriptionandabrand.Formostcountriesinoursample,pricesareatthetownorcitylevel,withtheexceptionofRwanda,wherepricesarecollectedatthe(moreaggregated)districtlevel.
Theanalysisinsection
4
usescleansamplesofpricedata,obtainedbyapplyingacleaningalgorithmtotherawdata.Moreover,asin
AtkinandDonaldson
(2015),we
convertallpricestoconstantU.S.dollarsbydeflatingthemusinginflationratesatoriginlocationsandbilateralnominalexchangeratesbetweenlocalcurrenciesandtheU.S.dollar.ThecleaninganddeflatingproceduresaredescribedinAppendix
A.
2.2Products’originlocations
Theestimationstrategyproposedby
AtkinandDonaldson
(2015)dependsonprecisely
identifyinglocationswhereaproductisproducedorimported.Todothis,wesearchovertheInternettodeterminewhichmanufacturersproduceeachbrandandwheretheirfactoriesarelocated.Forimportedgoods,weidentifythemainportsofentryineach
5
countryandtheirlocationstoassignimportedproductstothem
.3
Forlandlockedcoun-tries,weidentifyportsatneighboringcountriesthroughwhichmostimportscome(e.g.,insomecases,countriesareinconflictwithsomeborderingcountriesandimportsdonotcomethroughthem).Then,weidentifythebordercrossingsthatareclosesttothoseports.Finally,wegeocodealllocationstodeterminetheirlatitudeandlongitude.Foreachproduct,wedefinea“tradingpair”asanoriginandadestinationlocation.
Conditionalonbeingnarrowlydefined,weconsiderproductsthatarebroadlyavailableacrosslocationsandperiodsinoursample.Specifically,werestrictsamplestoproductsforwhichpricesareobservedintheproducts’sourceanddestinationlocationsinmorethansixmonths
.4
Table
1
describesthemainfeaturesoftheresultingsamplesweconsiderforeachcountry.Thenumberofproductsrangesfrom9inMadagascarto43inRwanda.Thefulllistofproductsforeachcountry,includingtheirbrands,presentations,andmanufacturers,isincludedintheAppendix
A.2.
Thenumberofdestinationlocations(markets,cities,ordistricts)rangesfrom6inGeorgiato38inNigeria.Figure
1
showsthelocationsforeachcountryinoursample,aswellasthemajorroadsconnectingthem,andindicatesthelocationwhereaproductismanufacturedorimported,onwhichweelaborateinsection
2.2.5
Table
1
alsoshowstheperiodscoveredbyeachcountrysample.WiththeexceptionoftheNigeriasample,whichstartsinJanuary2001,allsamplesstartafterJanuary2010.ThelongestpanelcorrespondstoMadagascarandcoverstheperiodfromJanuary2010toApril2021.TheshortestpanelistheoneforKenya,coveringfromOctober2018toJanuary2022.
Averageoriginprices,pricegapsbetweenoriginanddestinationlocations,anddis-tances,arereportedinTable
2.
Table1:Mainfeaturesandcoverageofthedata
Country
No.ofproducts
Origins
Destinations
Typeoflocations
Startperiod
Endperiod
Kenya
20
10
32
Cities
Oct2018
Jan2022
Madagascar
9
3
7
Majorcities
Jan2010
Apr2021
Nigeria
25
5
38
Cities
Jan2001
Jul2010
Rwanda
43
4
13
Districts
Jan2013
Dec2020
Tanzania
32
5
20
Cities
Jan2012
Apr2021
Georgia
21
4
6
Cities
Jan2012
Dec2020
Notes:thistabledescribesthemainfeaturesofthedatasetsforeachcountryinoursample.Source:
authors’elaborationbasedonCPIdatafromcountries’NSO.
3OurmainsourcesareLogcluster,awikiwithdetailedlogisticsinformationabouteachcountry,andWorldPortSource.
4Asdiscussedinsection
3.2,estimationofpass-throughratesreliesonvariationofpricesovertimefor
eachproduct-destinationpair.
5ThedataunderlyingthemapsaretakenfromtheGlobalRoadsInventoryProject(GRIP),availableat
/download-grip-dataset.
6
(a)Kenya(b)Madagascar
(c)Nigeria(d)Rwanda
(e)Tanzania(f)GeorgiaFigure1:Mapsofmarketlocations
Notes:thisfigureshowsmarketlocationsforeachcountryinoursample,aswellasmajorroadsconnectinglocations,indicatingoriginlocations(productionlocationsorportsofentry).Source:authors’elaborationbasedontheGRIPdataset.
7
2.3Distancebetweenlocations
Thebaselinemeasureofdistanceweemployisgeodesicdistance,thatis,theshortestdis-tancebetweentwolocations.Table
2
reportsthemean,minimumandmaximumgeodesic
distancebetweenoriginanddestinationlocations.
Alternatively,following
AtkinandDonaldson
(2015),weusetwoadditionalmeasures
tocontrolforquantityandqualitydifferencesincountries’roadnetworks.Thefirst,whichaimsatcapturingquantitydifferences,isthedistancebetweentwolocationsalongthequickestroute,ascalculatedbyGoogleMaps.Figure
1
showstheroadnetworkineachcountry.Thesecond,whichshouldcapturequalitydifferences,isthetimeittakestocompleteatripbetweentwolocationsfollowingthequickestroute,alsofromGoogleMaps.
Table2:Descriptivestatistics
KE
MG
NG
RW
TZ
GE
Meanoriginprice
2.306
0.922
0.902
2.328
0.898
2.577
(1.833)
(0.451)
(1.223)
(2.993)
(0.840)
(2.775)
Meandestinationprice
2.357
0.918
0.960
2.302
0.910
2.584
(1.984)
(0.520)
(1.386)
(2.980)
(1.001)
(2.729)
Meanpricegap(tradingpairs)
0.052
-0.004
0.058
-0.025
0.013
0.007
(0.454)
(0.264)
(0.433)
(0.480)
(0.662)
(0.454)
Geodesicdistance(km)
279
414
597
80
493
170
(208)
(224)
(292)
(35)
(276)
(79)
Logdistancetooriginlocation
5.305
5.858
6.214
4.273
5.943
5.001
(0.870)
(0.605)
(0.691)
(0.499)
(0.927)
(0.551)
Min.distance(tradingpairs,km)
20.6
114.3
34.2
7.9
2.2
50.9
Max.distance(tradingpairs,km)
915.8
874.9
1,254.8
152.9
1,362.6
318.5
Numberoftradingpairs
134
18
153
30
85
20
Observations
9,280
5,997
48,379
26,215
50,583
6,173
Notes:Thistablepresentsdescriptivestatisticsforoursampleofcountries.Thefirstandsecondrowsreportthemeanpriceatthefactorylocation(orlocationoftheportofentry)andthemeanpriceatdestinations.Thethirdrowreportspricegapsusingdataformtradingpairs.AllpricesaredeflatedbyinflationattheoriginlocationandthenconvertedtoU.S.dollarsusingtheexchangerateprevailingduringthebaseperiod.Thefourthrowreportsmeangeodesicdistancebetweentradingpairsmeasuredinkilometers.Thefifthrowreportstheaveragedistancetotheoriginlocation(inlogkilometers).Thefifthandsixthrowsreporttheminimumandmaximumdistancesbetweentradingpairs,respectively.Theseventhrowreportsthenumberoftradingpairs.Thelastrowreportsthenumberofobservations.Source:Authors’estimatesbasedonnationalCPIdataanddistancescalculatedusingGoogle.
3Methodologicalframework
Thetheoreticalframeworkunderlyingourestimationstrategyisbasedonthemodelde-velopedby
AtkinandDonaldson
(2015)
.Inthissection,weoutlinethemainelements
8
andintuitionofthetheory.Interestedreaderscanfindadditionaldetailsandproofsinthatpaper.
3.1Theory
Theeconomyischaracterizedbymultiplemarkets(orlocations)indexedbydandasingleconsumptiongood.TheinversedemandforthisproductineachmarketisgivenbyP(Qd,Dd),whereQdisquantitydemandedandDdcharacterizesdemandconditionsinlocationd.Productionofthegoodcantakeplaceathomeorabroadatasinglefactory.Whatmattersforthemodelisthedomesticoriginoftheproduct,denotedo.Ifproducedathome,oindicatesthefactorylocation;ifimported,oindicatestheportorbordercrossingthroughwhichtheproductenteredthecountry.
IdenticaldomesticintermediariesbuytheproductinwholesalemarketsattheoriginlocationatpricePoandsellittoconsumersind,effectivelyactingasretailersaswell.Intermediaries’tradingtechnologyischaracterizedbytheirtotalcosts,Cd(qd),whereqdisthequantitytradedfromotod.Intheextensionofthemodeltomanyproducts,wefurtherassumethateachproductissourcedfromonelocationonly,sothatocanbeomittedfromthesubscriptinqd.TotalcostsincludeafixedcostFdandamarginalcostcd.Themarginalcostincludesthecostofbuyingthegoodattheorigin,givenbyitspricePo,andthecostoftradingthefoodfromotod,givenbyτ(Xd),whereXdisavectorofcostshifters,includingdistanceand,potentially,otherfactorssuchasroadqualityanddestination-specificretailcosts.Totalcostsarethengivenby
C(qd)=Fd+[Po+τ(Xod)].
Anintermediarychoosequantitiesqdtomaximizeprofitsinanimperfectlycompetitivemarket,subjecttotheperceivedresponseofotherintermediaries.Thereisnoentryofintermediariesand,undercertainassumptions,thefirst-orderconditionsoftheintermedi-ary’soptimizationproblemimplythatpricegapsbetweentheoriginandthedestinationlocationsaregivenby:
?Pod≡Pd?Po=τ(Xod)+μd(τod,Dd,?d)(1)
whereμdisthemark-upchargedbytheintermediaryatlocationd,whichdependsontradecosts,demandconditionsatd,andacompetitivenessindex?d,whichinturndependsonthenumberofintermediariesandtheextentofstrategicinteractionsamongthem.
From(1),variationintradecostsshiftersimplies:
whereρod≡1+(?μ/?τod)isthepass-throughrate,thatis,theeffectoftradecostson
9
prices.Itcanbeshownthat,inthisframework,thepass-throughratedependsontheelasticityoftheslopeofthedemandscheduleandcompetitiveconditions(?d).InourempiricalanalysisinSection
4,themaintradecostshifterofinterest
xodisdistance.Tosimplifytheexposition,inwhatfollowswesetXod=xod.
Equation(2)illustratesthreesourcesofbiasthatcanarisewhenaimingatidentifying
tradecostsfromspatialpricegaps:(1)incompletepass-through(ρod1),(2)variationindemandconditionsacrosslocations,and(3)variationintheextentofcompetitionacrosslocations.Underadditionalassumptions,thepass-throughratecancontrolforthissourcesofbias.Inparticular,undertheassumptionthatthepass-throughrateisindependentofquantities
qd,equation(2)simplifiesto
?Pod=ρodτ(xd)+(1?ρod)(ad?Po),(3)
whereadisalocaldemandshifter.Underthisspecification,ρodandthelocaldemandshifteradaresufficienttocontrolforlocalcompetitiveanddemandconditions.
Thefollowingsubsectionexplainshowthistheoreticalframeworkcanguidethespec-ificationofempiricalmodelstoestimatetheeffectofdistanceontradecostsexploitingorigin-destinationpricegaps,controllingforotherfactorsthatcorrelatewithdistanceandcouldaffectpricedifferentialsthroughvariationofmarkupsacrosslocations.Section
4
describesthemethodsusedtoestimatethesemodels.
3.2Estimationstrategy
Theestimationstrategyexploitspricedataonmultipleproductsksourcedfromlocationsoandsellingatlocationsdatdifferenttimeperiodst.Withvariationacrossproducts,
destinations,originlocations,andtime,equation(3)impliesthefollowingrelationship
betweenproductpricesattheoriginandthedestination:
Pt=ρdP+ρdτ(xdt)+(1?ρd)at,(4)
wherewehavefurtherassumedthatthepass-throughrateremainsfixedovertime
.6
Thelatterassumptionholdsiflocaldemandelasticitiesandcompetitiveconditions(e.g.,entryofnewintermediaries)areconstantovertime.
Inequation(4),tradecosts
τ(xdt),pass-throughratesρdanddemandshiftersat
arenotobservable.Thestrategyaimsatidentifyingτ(xdt)andρdbasedonvariation
inpricesovertimeandspace,anddistancebetweenlocations,whiletreatingatasun-
observedheterogeneityandcapturingitthroughasetoffixedeffects.Forthisreason,preciselyidentifyingoriginlocationsiskeyfortheaccuracyoftheestimates.
Theestimationprocedureinvolvestwosteps,asfollows:
6Itisinfeasibletoestimateseparatepass-throughratesforeachperiodsincethenumberofparameterstoestimatewouldequalthenumberofobservations.
10
1.Pass-throughrates.Inthefirststep,weproduceestimatesofpass-throughrates
dbyregressingdestinationpricesonoriginprices,controllingfortradecostsand
demandshifters.Specifically,weestimatetheparametersofthefollowingmodel:
Pt=ρdP+γ+γt+εdt,(5)
whereγareproduct-destinationfixedeffects,γtisaproduct-destinationlinear
timetrend,andεdtisanunobservederrortermthatcapturesshockstotradecosts
andlocaldemandshifters.
2.Tradecosts.Inthesecondstep,werecoverestimatesoftradecosts(xodt)using
pass-throughestimatesfromthefirststep.Given(unbiased)estimatesd,wecan
manipulateequation(4)toderiveandexpressionforan“adjustedpricegap”:
Computingthis“adjustedpricegap”allowsfortheestimationofτ(xdt)when
markupsarepositiveandvaryacrosslocations,i.e.,ρd1.Localdemandcon-
ditionsarecontrolledforbyincludingfixedeffectsinteractedwiththeadjustment
factor,andtradecostsaredecomposedasτ(xdt)=f(xod)+χdt,whereχdtcaptures
unobservabletime-varyingfactorsthataffecttradecosts.Theestimatingmodelthen
becomes(7)
whereαareproduct-timefixedeffects,αdaredestinationfixedeffects,andξdt
capturesunobservedshockstolocaldemandandtradecosts.InSection
4.3,we
specifythefunctionf(xod)thatwetaketothedatatorecovertheeffectofdistanceontradecosts.
4Estimatesofintra-nationaltradecosts
Thissectionpresentsestimationresultstoquantifytherelationshipbetweendistanceandintra-nationaltradecostsinoursampleoflow-andmiddle-incomecountries.Usingthenotationintroducedintheprevioussection,weattempttoestimate?τ(xod)/?xod,wherexodisoneofthedifferentmeasuresofdistancedescribedinsection
2.3.
Ultimately,weapplythestrategydescribedinsection
3.2,whichaimsatestimatingthisrelationship
usingdataaboutpricegapsacrosslocations,controllingforvariationinmarkupsacrosslocations.Beforeturningtothatexercise,forbenchmarkingpurposes,wefirstpresentestimatesthatabstractfromvariationinmarkups.
4.1Spatialpricegaps
Underthetheoreticalframeworkdescribedinsection
3.1,ifm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款分期還合同范本
- 公共維修基金合同范本
- 2025年中國(guó)中短褲行業(yè)市場(chǎng)深度分析及未來發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 科技型電商企業(yè)知識(shí)產(chǎn)權(quán)戰(zhàn)略規(guī)劃
- 現(xiàn)代物流技術(shù)驅(qū)動(dòng)的供應(yīng)鏈優(yōu)化策略
- 體育技能培訓(xùn)合同范本
- 農(nóng)民荒地開荒合同范本
- 個(gè)人入股收購(gòu)合同范本
- 人才入職合同范本
- 父親在女兒婚禮講話稿15篇
- 安徽藥都銀行2023年員工招聘考試參考題庫(kù)含答案詳解
- 小學(xué)體育與健康人教體育與健康基礎(chǔ)知識(shí)輕度損傷的自我處理【省一等獎(jiǎng)】
- 外貿(mào)中英文報(bào)價(jià)單模版
- 部編版二年級(jí)下冊(cè)科學(xué)全冊(cè)教案
- 婦產(chǎn)科學(xué)(第9版)第二章女性生殖系統(tǒng)解剖
- GB/T 700-2006碳素結(jié)構(gòu)鋼
- 2023年開封大學(xué)高職單招(數(shù)學(xué))試題庫(kù)含答案解析
- 建設(shè)項(xiàng)目委托代建合同范文(4篇)
- GB/T 13277.4-2015壓縮空氣第4部分:固體顆粒測(cè)量方法
- 人教版八年級(jí)下冊(cè)歷史全冊(cè)教案完整版教學(xué)設(shè)計(jì)含教學(xué)反思
- 提高白云石配比對(duì)燒結(jié)生產(chǎn)的影響
評(píng)論
0/150
提交評(píng)論