版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽定遠高復學校2025屆高一下數(shù)學期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列說法中正確的是(
)A.棱柱的側面可以是三角形B.正方體和長方體都是特殊的四棱柱C.所有的幾何體的表面都能展成平面圖形D.棱柱的各條棱都相等2.設等差數(shù)列的前項的和為,若,,且,則()A. B. C. D.3.在中,點滿足,則()A. B.C. D.4.已知函數(shù)與的圖象上存在關于軸對稱的點,則實數(shù)的取值范圍是().A. B. C. D.5.將函數(shù)的圖象向左平移個單位長度,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若對任意的均有成立,則的最小值為()A. B. C. D.6.若直線與直線平行,則的值為()A.1 B.﹣1 C.±1 D.07.若平面和直線,滿足,,則與的位置關系一定是()A.相交 B.平行 C.異面 D.相交或異面8.若一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為,則目標受損但未被擊毀的概率為()A. B. C. D.9.若在是減函數(shù),則的最大值是A. B. C. D.10.已知,則下列不等式成立的是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的面積為,圓心角為,則該扇形半徑為__________.12.在銳角中,角的對邊分別為.若,則角的大小為為____.13.直線x-314.在某校舉行的歌手大賽中,7位評委為某同學打出的分數(shù)如莖葉圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差為______.15.已知點是所在平面內的一點,若,則__________.16.把二進制數(shù)1111(2)化為十進制數(shù)是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知都是第二象限的角,求的值。18.已知數(shù)列的前項和(1)求的通項公式;(2)若數(shù)列滿足:,求的前項和(結果需化簡)19.已知是同一平面內的三個向量,其中.(1)若,求;(2)若與共線,求的值.20.如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.21.已知,.(1)求;(2)求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:棱柱的側面是平行四邊形,不可能是三角形,所以A不正確;球的表面就不能展成平面圖形,所以C不正確;棱柱的側棱與底面邊長不一定相等,所以D不正確.考點:本小題主要考查空間幾何體的性質.點評:解決此類問題的主要依據(jù)是空間幾何體的性質,需要學生有較強的空間想象能力.2、C【解析】,,,,,,故選C.3、D【解析】
因為,所以,即;故選D.4、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關于x軸對稱的點,則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,故當x=1時,g(x)取最小值﹣2,當x=2時,函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點睛:圖像上存在關于軸對稱的點,即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉化為方程有解求參的問題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點即可;這是解決方程有解,圖像有交點,函數(shù)有零點的常見方法。5、D【解析】
直接應用正弦函數(shù)的平移變換和伸縮變換的規(guī)律性質,求出函數(shù)的解析式,對任意的均有,說明函數(shù)在時,取得最大值,得出的表達式,結合已知選出正確答案.【詳解】因為函數(shù)的圖象向左平移個單位長度,所以得到函數(shù),再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,所以,對任意的均有成立,所以在時,取得最大值,所以有而,所以的最小值為.【點睛】本題考查了正弦型函數(shù)的圖象變換規(guī)律、函數(shù)圖象的性質,考查了函數(shù)最大值的概念,正確求出變換后的函數(shù)解析式是解題的關鍵.6、B【解析】
兩直線平行表示斜率相同或者都垂直x軸,即。【詳解】當時,兩直線分別為:與直線,不平行,當時,直線化為:直線化為:,兩直線平行,所以,,解得:,當時,兩直線重合,不符,所以,【點睛】直線平行即表示斜率相同,且截距不同,如果截距相同則表示同一條直線。7、D【解析】
當時與相交,當時與異面.【詳解】當時與相交,當時與異面.故答案為D【點睛】本題考查了直線的位置關系,屬于基礎題型.8、D【解析】
由已知條件利用對立事件概率計算公式直接求解.【詳解】由于一架飛機向目標投彈,擊毀目標的概率為,目標未受損的概率為;所以目標受損的概率為:;目標受損分為擊毀和未被擊毀,它們是對立事件;所以目標受損的概率目標受損被擊毀的概率目標受損未被擊毀的概率;故目標受損但未被擊毀的概率目標受損的概率目標受損被擊毀的概率,即目標受損但未被擊毀的概率;故答案選D【點睛】本題考查概率的求法,注意對立事件概率計算公式的合理運用,屬于基礎題.9、A【解析】
分析:先確定三角函數(shù)單調減區(qū)間,再根據(jù)集合包含關系確定的最大值.詳解:因為,所以由得因此,從而的最大值為,選A.點睛:函數(shù)的性質:(1).(2)周期(3)由求對稱軸,(4)由求增區(qū)間;由求減區(qū)間.10、D【解析】
利用排除法,取,,可排除錯誤選項,再結合函數(shù)的單調性,可證明D正確.【詳解】取,,可排除A,B,C,由函數(shù)是上的增函數(shù),又,所以,即選項D正確.故選:D.【點睛】本題考查不等式的性質,考查學生的推理論證能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
將圓心角化為弧度制,再利用扇形面積得到答案.【詳解】圓心角為扇形的面積為故答案為2【點睛】本題考查了扇形的面積公式,屬于簡單題.12、【解析】由,兩邊同除以得,由余弦定理可得是銳角,,故答案為.13、π【解析】
將直線方程化為斜截式,利用直線斜率與傾斜角的關系求解即可.【詳解】因為x-3所以y=33x-33則tanα=33,α=【點睛】本題主要考查直線的斜率與傾斜角的關系,意在考查對基礎知識的掌握情況,屬于基礎題.14、2【解析】
去掉分數(shù)后剩余數(shù)據(jù)為22,23,24,25,26,先計算平均值,再計算方差.【詳解】去掉分數(shù)后剩余數(shù)據(jù)為22,23,24,25,26平均值為:方差為:故答案為2【點睛】本題考查了方差的計算,意在考查學生的計算能力.15、【解析】
設為的中點,為的中點,為的中點,由得到,再進一步分析即得解.【詳解】如圖,設為的中點,為的中點,為的中點,因為,所以可得,整理得.又,所以,所以,又,所以.故答案為【點睛】本題主要考查向量的運算法則和共線向量,意在考查學生對這些知識的理解掌握水平,解答本題的關鍵是作輔助線,屬于中檔題.16、.【解析】
由二進制數(shù)的定義可將化為十進制數(shù).【詳解】由二進制數(shù)的定義可得,故答案為:.【點睛】本題考查二進制數(shù)化十進制數(shù),考查二進制數(shù)的定義,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、;【解析】
根據(jù)所處象限可確定的符號,利用同角三角函數(shù)關系可求得的值;代入兩角和差正弦和余弦公式可求得結果.【詳解】都是第二象限的角,,【點睛】本題考查利用兩角和差正弦和余弦公式求值的問題;關鍵是能夠根據(jù)角所處的范圍和同角三角函數(shù)關系求得三角函數(shù)值.18、(1);(2);【解析】
(1)運用數(shù)列的遞推式得時,,時,,化簡計算可得所求通項公式;(2)求得,運用數(shù)列的錯位相減法求和,結合等比數(shù)列的求和公式,計算可得所求和.【詳解】(1)可得時,則(2)數(shù)列滿足,可得,即,前項和兩式相減可得化簡可得【點睛】本題考查數(shù)列的遞推式的運用,考查數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,考查運算能力,屬于中檔題.19、(1);(2)【解析】
(1)根據(jù)向量的坐標的運算法則和向量垂直的條件,以及模的定義即可求出.(2)根據(jù)向量共線的條件即可求出.【詳解】(1)因為(2)由已知:【點睛】本題考查了向量的坐標運算以及向量的垂直和平行的坐標表示,屬于基礎題.20、(1)見證明;(2)【解析】
(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版智慧城市基礎設施施工進度管理協(xié)議3篇
- 2025年度體育場館建設承包合同書模板8篇
- 2024精油購銷合同范本
- 2025年度個人房屋建造項目驗收標準合同4篇
- 2025年物流信息化平臺開發(fā)與應用合同3篇
- 二零二五年度集體土地征收補償安置協(xié)議范本3篇
- 2025版二手房買賣合同示范文本4篇
- 2025版協(xié)議離婚條件及程序法律援助與指導合同3篇
- 2025年度個人股權質押股權投資基金管理合同(專業(yè)管理版)3篇
- 2025版美術教師教育項目評估聘用合同協(xié)議4篇
- 生物人教版七年級(上冊)第一章第一節(jié) 生物的特征 (共28張)2024版新教材
- 2025屆安徽省皖南八校高三上學期8月摸底考試英語試題+
- 工會資金采購管理辦法
- 玩具活動方案設計
- Q∕GDW 516-2010 500kV~1000kV 輸電線路劣化懸式絕緣子檢測規(guī)程
- 2024年湖南汽車工程職業(yè)學院單招職業(yè)技能測試題庫及答案解析
- 家長心理健康教育知識講座
- GB/T 292-2023滾動軸承角接觸球軸承外形尺寸
- 2024年九省聯(lián)考高考數(shù)學卷試題真題答案詳解(精校打?。?/a>
- 軍人結婚函調報告表
- 民用無人駕駛航空器實名制登記管理規(guī)定
評論
0/150
提交評論