




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變2.設(shè)集合,則()A. B.C. D.3.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.4.復(fù)數(shù)滿足,則()A. B. C. D.5.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.6.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.97.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.8.若復(fù)數(shù)滿足(是虛數(shù)單位),則()A. B. C. D.9.已知數(shù)列滿足:,則()A.16 B.25 C.28 D.3310.如圖,在三棱柱中,底面為正三角形,側(cè)棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.11.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.12.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,橢圓:的離心率為,F(xiàn)是的右焦點,點P是上第一角限內(nèi)任意一點,,,若,則的取值范圍是_______.14.函數(shù)在區(qū)間上的值域為______.15.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.16.正三棱柱的底面邊長為2,側(cè)棱長為,為中點,則三棱錐的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,判斷函數(shù),()有幾個零點,并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍.18.(12分)設(shè),,其中.(1)當(dāng)時,求的值;(2)對,證明:恒為定值.19.(12分)等差數(shù)列的前項和為,已知,.(Ⅰ)求數(shù)列的通項公式及前項和為;(Ⅱ)設(shè)為數(shù)列的前項的和,求證:.20.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點坐標(biāo)為,圓與直線交于兩點,求的值.21.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.22.(10分)求下列函數(shù)的導(dǎo)數(shù):(1)(2)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由函數(shù)的圖象關(guān)于直線對稱,得,進而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運算求解能力,是中檔題2、B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.3、A【解析】
推導(dǎo)出,分別取的中點,連結(jié),則,推導(dǎo)出,從而,進而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.4、C【解析】
利用復(fù)數(shù)模與除法運算即可得到結(jié)果.【詳解】解:,故選:C【點睛】本題考查復(fù)數(shù)除法運算,考查復(fù)數(shù)的模,考查計算能力,屬于基礎(chǔ)題.5、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運算能力.6、B【解析】
模擬程序運行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運行,觀察變量值,從而得出結(jié)論.7、C【解析】
利用復(fù)數(shù)的除法運算法則進行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因為,所以,由復(fù)數(shù)模的定義知,.故選:C【點睛】本題考查復(fù)數(shù)的除法運算法則和復(fù)數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.8、B【解析】
利用復(fù)數(shù)乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復(fù)數(shù)的乘法運算,考查復(fù)數(shù)模的計算,屬于基礎(chǔ)題.9、C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.10、B【解析】
建立空間直角坐標(biāo)系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側(cè)棱垂直于底面.設(shè)的中點為,建立空間直角坐標(biāo)系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.11、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點時截距最小,;當(dāng)經(jīng)過時,截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.12、A【解析】
首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點.由于“當(dāng)時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由于點在橢圓上運動時,與軸的正方向的夾角在變,所以先設(shè),又由,可知,從而可得,而點在橢圓上,所以將點的坐標(biāo)代入橢圓方程中化簡可得結(jié)果.【詳解】設(shè),,,則,由,得,代入橢圓方程,得,化簡得恒成立,由此得,即,故.故答案為:【點睛】此題考查的是利用橢圓中相關(guān)兩個點的關(guān)系求離心率,綜合性強,屬于難題.14、【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個角的一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.15、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉(zhuǎn)與可行域有交點即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當(dāng)時,滿足條件,當(dāng)時,直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運算求解的能力,屬于中檔題.16、【解析】
試題分析:因為正三棱柱的底面邊長為,側(cè)棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個零點,證明見解析;(3)【解析】
對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個零點.根據(jù)函數(shù)的零點存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時,利用函數(shù)的單調(diào)性將問題轉(zhuǎn)化為的問題;②當(dāng)時,當(dāng)時,在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個零點.證明如下:因為時,所以,因為,所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個零點,由(1)可得時,,即,故時,,所以,由得,平方得,所以,因為,所以在上恒成立,所以函數(shù)在上單調(diào)遞減,因為,所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個零點,綜上可知:函數(shù)有2個零點.(3)記函數(shù),下面考察的符號.求導(dǎo)得.當(dāng)時恒成立.當(dāng)時,因為,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因為在上連續(xù),所以由函數(shù)的零點存在性定理得存在唯一的,使,∴,因為,所以∴因為函數(shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時,在上恒成立,即在上恒成立.記,則,當(dāng)變化時,,變化情況如下表:極小值∴,故,即.②當(dāng)時,,當(dāng)時,在上恒成立.綜合(1)(2)知,實數(shù)的取值范圍是.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點存在性定理判斷函數(shù)零點個數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運算求解能力;通過構(gòu)造函數(shù),利用零點存在性定理判斷其零點,從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強、難度大型試題.18、(1)1(2)1【解析】分析:(1)當(dāng)時可得,可得.(2)先得到關(guān)系式,累乘可得,從而可得,即為定值.詳解:(1)當(dāng)時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數(shù)的有關(guān)運算,解題時要注意所給出的的定義,并結(jié)合組合數(shù)公式求解.由于運算量較大,解題時要注意運算的準(zhǔn)確性,避免出現(xiàn)錯誤.19、(Ⅰ),(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)等差數(shù)列公式直接計算得到答案.(Ⅱ),根據(jù)裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數(shù)列的基本量的計算,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.20、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標(biāo)方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達(dá)定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標(biāo)方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應(yīng)的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 異面直線及其夾角性質(zhì)課件
- 幼兒園三生教育教案
- 幼兒園如何開展值日生活動
- 中醫(yī)診斷學(xué)-辨證-概說、八綱課件
- 房屋頂賬協(xié)議書和合同
- 神明合同協(xié)議書
- 水田合同協(xié)議書范本
- 酒瓶合同協(xié)議書
- 外借合同協(xié)議書
- 廠房合同協(xié)議書乙方
- 成品檢驗記錄表
- DB33-T 2196-2019水利工程標(biāo)識牌設(shè)置規(guī)范
- 基于前藥原理的藥物設(shè)計解析課件
- 2022年上海海洋大學(xué)食品科學(xué)復(fù)試資料
- 病例報告表(CRF)模板
- Q∕GDW 12158-2021 國家電網(wǎng)有限公司重大活動電力安全保障工作規(guī)范
- 我把沒有送給你(課堂版)(1)
- 杭汽HNKS50-63-28型汽輪機大修施工方案
- Q∕GDW 12113-2021 邊緣物聯(lián)代理技術(shù)要求
- 劉半農(nóng)雨散文的特點
- 濰柴發(fā)動機WD615系列分解圖冊
評論
0/150
提交評論