版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆遼寧大連市數(shù)學(xué)高一下期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.?dāng)?shù)列滿足,則數(shù)列的前項和等于()A. B. C. D.2.如圖,向量,,,則向量可以表示為()A.B.C.D.3.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc24.已知的三邊滿足,則的內(nèi)角C為()A. B. C. D.5.在四邊形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共線,則四邊形ABCD為()A.平行四邊形 B.矩形 C.梯形 D.菱形6.已知與之間的幾組數(shù)據(jù)如下表則與的線性回歸方程必過()A.點 B.點C.點 D.點7.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.8.已知兩個單位向量的夾角為,則下列結(jié)論不正確的是()A.方向上的投影為 B.C. D.9.在△ABC中角ABC的對邊分別為A.B.c,cosC=,且acosB+bcosA=2,則△ABC面積的最大值為()A. B. C. D.10.設(shè),則“”是“”的()A.充要條件 B.充分而不必要條件C.必要而不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.已知樣本數(shù)據(jù)的方差是1,如果有,那么數(shù)據(jù),的方差為______.12.P是棱長為4的正方體的棱的中點,沿正方體表面從點A到點P的最短路程是_______.13.如圖甲是第七屆國際數(shù)學(xué)教育大會(簡稱)的會徽圖案,會徽的主體圖案是由如圖乙的一連串直角三角形演化而成的,其中,如果把圖乙中的直角三角形繼續(xù)作下去,記的長度構(gòu)成數(shù)列,則此數(shù)列的通項公式為_____.14.(理)已知函數(shù),若對恒成立,則的取值范圍為.15.不等式的解集是______.16.一個社會調(diào)查機構(gòu)就某地居民收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出了如圖所示的頻率分布直方圖,現(xiàn)要從這10000人中再用分層抽樣的方法抽出100人作進一步調(diào)查,則月收入在(元)內(nèi)的應(yīng)抽出___人.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.18.已知數(shù)列滿足,();(1)求、、;(2)猜想數(shù)列的通項公式;(3)用數(shù)學(xué)歸納法證明你的猜想;19.如圖1所示,在四邊形中,,且,,.(1)求的面積;(2)若,求的長.圖1圖220.2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5),第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示.已知第三組的頻數(shù)是第五組頻數(shù)的3倍.(1)求的值,并根據(jù)頻率分布直方圖估計該校學(xué)生一周課外閱讀時間的平均值;(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加?!爸腥A詩詞比賽”.經(jīng)過比賽后,從這6人中隨機挑選2人組成該校代表隊,求這2人來自不同組別的概率.21.制訂投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利分別為和,可能的最大虧損率分別為和.投資人計劃投資金額不超過億元,要求確保可能的資金虧損不超過億元,問投資人對甲、乙兩個項目各投資多少億元,才能使可能的盈利最大?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
當(dāng)為正奇數(shù)時,可推出,當(dāng)為正偶數(shù)時,可推出,將該數(shù)列的前項和表示為,結(jié)合前面的規(guī)律可計算出數(shù)列的前項和.【詳解】當(dāng)為正奇數(shù)時,由題意可得,,兩式相減得;當(dāng)為正偶數(shù)時,由題意可得,,兩式相加得.因此,數(shù)列的前項和為.故選:A.【點睛】本題考查數(shù)列求和,找出數(shù)列的規(guī)律是解題的關(guān)鍵,考查推理能力,屬于中等題.2、C【解析】
利用平面向量加法和減法的運算,求得的線性表示.【詳解】依題意,即,故選C.【點睛】本小題主要考查平面向量加法和減法的運算,屬于基礎(chǔ)題.3、C【解析】
利用特殊值對錯誤選項進行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.4、C【解析】原式可化為,又,則C=,故選C.5、C【解析】∵=++=-8a-2b=2,與不平行,∴四邊形ABCD為梯形.6、C【解析】
根據(jù)線性回歸方程必過樣本中心點,即可得到結(jié)論.【詳解】,,8根據(jù)線性回歸方程必過樣本中心點,可得與的線性回歸方程必過.故選:C.【點睛】本題考查線性回歸方程,解題的關(guān)鍵是利用線性回歸方程必過樣本中心點,屬于基礎(chǔ)題.7、B【解析】
根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結(jié)果.【詳解】由題意知:,則設(shè)向量與向量的夾角為則本題正確選項:【點睛】本題考查向量夾角的求解,關(guān)鍵是能夠通過平方運算將模長轉(zhuǎn)變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關(guān)系.8、B【解析】試題分析:A.方向上的投影為,即,所以A正確;B.,所以B錯誤;C.,所以,所以C正確;D.,所以.D正確.考點:向量的數(shù)量積;向量的投影;向量的夾角.點評:熟練掌握數(shù)量積的有關(guān)性質(zhì)是解決此題的關(guān)鍵,尤其要注意“向量的平方就等于其模的平方”這條性質(zhì).9、D【解析】
首先利用同角三角函數(shù)的關(guān)系式求出sinC的值,進一步利用余弦定理和三角形的面積公式及基本不等式的應(yīng)用求出結(jié)果.【詳解】△ABC中角ABC的對邊分別為a、b、c,cosC,利用同角三角函數(shù)的關(guān)系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.則,△ABC面積的最大值為,故選D.【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,基本不等式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于中檔題.10、C【解析】
首先解兩個不等式,再根據(jù)充分、必要條件的知識選出正確選項.【詳解】由解得.由得.所以“”是“”的必要而不充分條件故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查絕對值不等式的解法,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
利用方差的性質(zhì)直接求解.【詳解】根據(jù)題意,樣本數(shù)據(jù)的平均數(shù)為,方差是1,則有,對于數(shù)據(jù),其平均數(shù)為,其方差為,故答案為1.【點睛】本題考查方差的求法,考查方差的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.12、【解析】
從圖形可以看出圖形的展開方式有二,一是以底棱BC,CD為軸,可以看到此兩種方式是對稱的,所得結(jié)果一樣,另外一種是以側(cè)棱為軸展開,即以BB1,DD1為軸展開,此兩種方式對稱,求得結(jié)果一樣,故解題時選擇以BC為軸展開與BB1為軸展開兩種方式驗證即可【詳解】由題意,若以BC為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為4,6,故兩點之間的距離是若以BB1為軸展開,則AP兩點連成的線段所在的直角三角形的兩直角邊的長度分別為2,8,故兩點之間的距離是故沿正方體表面從點A到點P的最短路程是cm故答案為【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解的關(guān)鍵是能夠根據(jù)題意把求幾何體表面上兩點距離問題轉(zhuǎn)移到平面中來求13、【解析】
由圖可知,由勾股定理可得,利用等差數(shù)列的通項公式求解即可.【詳解】根據(jù)圖形,因為都是直角三角形,,是以1為首項,以1為公差的等差數(shù)列,,,故答案為.【點睛】本題主要考查歸納推理的應(yīng)用,等差數(shù)列的定義與通項公式,以及數(shù)形結(jié)合思想的應(yīng)用,意在考查綜合應(yīng)用所學(xué)知識解答問題的能力,屬于與中檔題.14、【解析】試題分析:函數(shù)要使對恒成立,只要小于或等于的最小值即可,的最小值是0,即只需滿足,解得.考點:恒成立問題.15、【解析】
由題可得,分式化乘積得,進而求得解集.【詳解】由移項通分可得,即,解得,故解集為【點睛】本題考查分式不等式的解法,屬于基礎(chǔ)題.16、25【解析】由直方圖可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分層抽樣應(yīng)抽出人.故答案為25.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)周期為π,最大值為2.(2)【解析】
(1)利用倍角公式降冪,展開兩角差的余弦,將函數(shù)的關(guān)系式化簡余弦型函數(shù),可求出函數(shù)的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【詳解】(1)函數(shù)f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值為2;(2)由題意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,當(dāng)b=c=1時,等號成立.∴a2≥4﹣1=3,即a.則a的最小值為.【點睛】本題考查三角函數(shù)的恒等變換,余弦形函數(shù)的性質(zhì)的應(yīng)用,余弦定理和基本不等式的應(yīng)用,是中檔題.18、(1),,;(2);(3)證明見解析;【解析】
(1)根據(jù)數(shù)列的遞推關(guān)系式,代入運算,即可求解、、;(2)由(1)可猜想得;(3)利用數(shù)學(xué)歸納法,即可證得猜想是正確的.【詳解】(1)由題意,數(shù)列滿足,();所以,,;(2)由(1)可猜想得;(3)①當(dāng)時,,上式成立;②假設(shè)當(dāng)時,成立,則當(dāng)時,由①②可得,當(dāng)時,成立,即數(shù)列的通項公式為.【點睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,以及數(shù)學(xué)歸納法的證明,其中解答中根據(jù)數(shù)列的遞推公式,準(zhǔn)確計算,同時熟記數(shù)學(xué)歸納法的證明方法是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.19、(1);(2).【解析】
(1)利用已知條件求出D角的正弦函數(shù)值,然后求△ACD的面積;
(2)利用余弦定理求出AC,通過,利用余弦定理求解AB的長.【詳解】(1)因為,,所以,又,所以,所以.(2)由余弦定理可得,因為,所以,解得.【點睛】本題考查余弦定理以及正弦定理的應(yīng)用,基本知識的考查,考查學(xué)生分析解決問題的能力,屬于中檔題.20、(1)a=0.06,平均值為12.25小時(2)【解析】
(1)由頻率分布直方圖可得第三組和第五組的頻率之和,第三組的頻率,由此能求出a和該樣本數(shù)據(jù)的平均數(shù),從而可估計該校學(xué)生一周課外閱讀時間的平均值;(2)從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為A,B,C,D,E,F(xiàn),利用列舉法能求出從該6人中選拔2人,從而得到這2人來自不同組別的概率.【詳解】(1)由頻率分布直方圖可得第三組和第五組的頻率之和為,第三組的頻率為∴該樣本數(shù)據(jù)的平均數(shù)所以可估計該校學(xué)生一周課外閱讀時間的平均值為小時.(2)易得從第3、4、5組抽取的人數(shù)分別為3、2、1,設(shè)為,則從該6人中選拔2人的基本事件有:共15種,其中來自不同的組別的基本事件有:,共11種,∴這2人來自不同組別的概率為.【點睛】本題考查平均數(shù)、概率的求法,考查古典概型、頻率分布直方圖等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.21、投資人用億元投資甲項目,億元投資乙項目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【解析】
設(shè)投資人分別用億元、億元投資甲、乙兩個項目,根據(jù)題意列出變量、所滿足的約束條件和線性目標(biāo)函數(shù),利用平移直線的方法得出線性目標(biāo)函數(shù)取得最大值時的最優(yōu)解,并將最優(yōu)解代入線性目標(biāo)函數(shù)可得出盈利的最大值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人股權(quán)轉(zhuǎn)讓與股權(quán)激勵計劃合同4篇
- 2025年在線娛樂服務(wù)合同
- 2025年借殼上市銷售協(xié)議
- 2025年化工品供應(yīng)協(xié)議
- 2025年辦公用品采購合同
- 2025年倉庫租賃業(yè)務(wù)保密協(xié)議
- 2025年度互聯(lián)網(wǎng)數(shù)據(jù)中心(IDC)運營管理合同范本4篇
- 二零二五版智慧小區(qū)門禁系統(tǒng)采購與維護協(xié)議4篇
- 二零二五年度二手船舶購置協(xié)議材料船舶買賣3篇
- 2025版儲罐租賃及物聯(lián)網(wǎng)技術(shù)應(yīng)用合同3篇
- 餐廚垃圾收運安全操作規(guī)范
- 皮膚內(nèi)科過敏反應(yīng)病例分析
- 電影《獅子王》的視聽語言解析
- 妊娠合并低鉀血癥護理查房
- 煤礦反三違培訓(xùn)課件
- 向流程設(shè)計要效率
- 2024年中國航空發(fā)動機集團招聘筆試參考題庫含答案解析
- 當(dāng)代中外公司治理典型案例剖析(中科院研究生課件)
- 動力管道設(shè)計手冊-第2版
- 2022年重慶市中考物理試卷A卷(附答案)
- Python繪圖庫Turtle詳解(含豐富示例)
評論
0/150
提交評論