安徽省合肥市科大附中2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
安徽省合肥市科大附中2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
安徽省合肥市科大附中2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
安徽省合肥市科大附中2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
安徽省合肥市科大附中2024屆中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省合肥市科大附中2024屆中考數(shù)學(xué)模擬預(yù)測題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在邊長為3的等邊三角形ABC中,過點(diǎn)C垂直于BC的直線交∠ABC的平分線于點(diǎn)P,則點(diǎn)P到邊AB所在直線的距離為()A.33 B.32 C.2.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或3.一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球則兩次摸到的球的顏色不同的概率為()A. B. C. D.4.化簡的結(jié)果是()A. B. C. D.5.下列事件是確定事件的是()A.陰天一定會下雨B.黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門C.打開電視機(jī),任選一個頻道,屏幕上正在播放新聞聯(lián)播D.在五個抽屜中任意放入6本書,則至少有一個抽屜里有兩本書6.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點(diǎn),E,F(xiàn)分別是AP,RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動而點(diǎn)R不動時,那么下列結(jié)論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定7.如圖:已知AB⊥BC,垂足為B,AB=3.5,點(diǎn)P是射線BC上的動點(diǎn),則線段AP的長不可能是()A.3 B.3.5 C.4 D.58.將拋物線向上平移3個單位,再向左平移2個單位,那么得到的拋物線的解析式為()A. B. C. D.9.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°10.下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個圖形中一共有3個菱形,第②個圖形中一共有7個菱形,第③個圖形中一共有13個菱形,…,按此規(guī)律排列下去,第⑨個圖形中菱形的個數(shù)為()A.73 B.81 C.91 D.10911.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.12.如圖,網(wǎng)格中的每個小正方形的邊長是1,點(diǎn)M,N,O均為格點(diǎn),點(diǎn)N在⊙O上,若過點(diǎn)M作⊙O的一條切線MK,切點(diǎn)為K,則MK=()A.3 B.2 C.5 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關(guān)于的分式方程的解為負(fù)數(shù),則的取值范圍是_________.14.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點(diǎn)O順時針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點(diǎn)E逆時針旋轉(zhuǎn)90°后得到線段ED,分別以O(shè)、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.15.計算:______.16.已知⊙O的半徑為5,由直徑AB的端點(diǎn)B作⊙O的切線,從圓周上一點(diǎn)P引該切線的垂線PM,M為垂足,連接PA,設(shè)PA=x,則AP+2PM的函數(shù)表達(dá)式為______,此函數(shù)的最大值是____,最小值是______.17.如圖所示,點(diǎn)A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點(diǎn)A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點(diǎn)B1、B2、B3,分別過點(diǎn)B1、B2、B3作x軸的平行線,分別與y軸交于點(diǎn)C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.18.若代數(shù)式x2﹣6x+b可化為(x+a)2﹣5,則a+b的值為____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)y=的圖象上.(1)求反比例函數(shù)y=的表達(dá)式;(2)在x軸上是否存在一點(diǎn)P,使得S△AOP=S△AOB,若存在,求所有符合條件點(diǎn)P的坐標(biāo);若不存在,簡述你的理由.20.(6分)在以“關(guān)愛學(xué)生、安全第一”為主題的安全教育宣傳月活動中,某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,了解到上學(xué)方式主要有:A:結(jié)伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:(1)本次抽查的學(xué)生人數(shù)是多少人?(2)請補(bǔ)全條形統(tǒng)計圖;請補(bǔ)全扇形統(tǒng)計圖;(3)“自行乘車”對應(yīng)扇形的圓心角的度數(shù)是度;(4)如果該校學(xué)生有2000人,請你估計該校“家人接送”上學(xué)的學(xué)生約有多少人?21.(6分)如圖,在Rt△ABC中,,點(diǎn)在邊上,⊥,點(diǎn)為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.22.(8分)為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進(jìn)行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)23.(8分)如圖,AC是⊙O的直徑,點(diǎn)P在線段AC的延長線上,且PC=CO,點(diǎn)B在⊙O上,且∠CAB=30°.(1)求證:PB是⊙O的切線;(2)若D為圓O上任一動點(diǎn),⊙O的半徑為5cm時,當(dāng)弧CD長為時,四邊形ADPB為菱形,當(dāng)弧CD長為時,四邊形ADCB為矩形.24.(10分)計算:(1)(2)25.(10分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價比2014年下降了11元/盒,該商店用2400元購進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.(1)2014年這種禮盒的進(jìn)價是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?26.(12分)某中學(xué)開展了“手機(jī)伴我健康行”主題活動,他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時間”的問卷調(diào)查,并繪制成如圖①,②所示的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.

請你根據(jù)圖中信息解答下列問題:

(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的圓心角度數(shù)是_____°;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)該校共有學(xué)生1200人,試估計每周使用手機(jī)時間在2小時以上(不含2小時)的人數(shù).27.(12分)解方程:=1.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:∵△ABC為等邊三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC?tan∠PBC=3考點(diǎn):1.角平分線的性質(zhì);2.等邊三角形的性質(zhì);3.含30度角的直角三角形;4.勾股定理.2、D【解析】

根據(jù)=5,=7,得,因為,則,則=5-7=-2或-5-7=-12.故選D.3、B【解析】

本題主要需要分類討論第一次摸到的球是白球還是紅球,然后再進(jìn)行計算.【詳解】①若第一次摸到的是白球,則有第一次摸到白球的概率為,第二次,摸到白球的概率為,則有;②若第一次摸到的球是紅色的,則有第一次摸到紅球的概率為,第二次摸到白球的概率為1,則有,則兩次摸到的球的顏色不同的概率為.【點(diǎn)睛】掌握分類討論的方法是本題解題的關(guān)鍵.4、D【解析】

將除法變?yōu)槌朔ǎ喍胃?,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點(diǎn)睛】本題主要考查二次根式的加減乘除混合運(yùn)算,掌握二次根式的混合運(yùn)算法則是解題關(guān)鍵.5、D【解析】試題分析:找到一定發(fā)生或一定不發(fā)生的事件即可.A、陰天一定會下雨,是隨機(jī)事件;B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門,是隨機(jī)事件;C、打開電視機(jī),任選一個頻道,屏幕上正在播放新聞聯(lián)播,是隨機(jī)事件;D、在學(xué)校操場上向上拋出的籃球一定會下落,是必然事件.故選D.考點(diǎn):隨機(jī)事件.6、C【解析】

因為R不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點(diǎn),∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點(diǎn)睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應(yīng)的中位線的長度就不變.7、A【解析】

根據(jù)直線外一點(diǎn)和直線上點(diǎn)的連線中,垂線段最短的性質(zhì),可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點(diǎn)P是射線BC上的動點(diǎn),得AP≥AB,AP≥3.5,故選:A.【點(diǎn)睛】本題考查垂線段最短的性質(zhì),解題關(guān)鍵是利用垂線段的性質(zhì).8、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】將拋物線向上平移3個單位,再向左平移2個單位,根據(jù)拋物線的平移規(guī)律可得新拋物線的解析式為,故答案選A.9、D【解析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點(diǎn)睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的對角互補(bǔ)是解題的關(guān)鍵.10、C【解析】試題解析:第①個圖形中一共有3個菱形,3=12+2;第②個圖形中共有7個菱形,7=22+3;第③個圖形中共有13個菱形,13=32+4;…,第n個圖形中菱形的個數(shù)為:n2+n+1;第⑨個圖形中菱形的個數(shù)92+9+1=1.故選C.考點(diǎn):圖形的變化規(guī)律.11、B【解析】

先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點(diǎn)睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.12、B【解析】

以O(shè)M為直徑作圓交⊙O于K,利用圓周角定理得到∠MKO=90°.從而得到KM⊥OK,進(jìn)而利用勾股定理求解.【詳解】如圖所示:MK=.故選:B.【點(diǎn)睛】考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

分式方程去分母轉(zhuǎn)化為整式方程,由分式方程的解為負(fù)數(shù),求出a的范圍即可【詳解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解為負(fù)數(shù),得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案為:a>1且a≠2【點(diǎn)睛】此題考查分式方程的解,解題關(guān)鍵在于求出x的值再進(jìn)行分析14、.【解析】

作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉(zhuǎn)的性質(zhì)可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點(diǎn)睛】本題主要考查扇形的計算公式,正確表示出陰影部分的面積是計算的關(guān)鍵.15、【解析】原式==.故答案為:.16、x2+x+20(0<x<10)不存在.【解析】

先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據(jù)二次函數(shù)的性質(zhì),可求函數(shù)的最大值.【詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.【點(diǎn)睛】考查相似三角形的判定與性質(zhì),二次函數(shù)的最值等,綜合性比較強(qiáng),需要熟練掌握.17、1.【解析】

先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個陰影部分的面積之和,然后根據(jù)三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【詳解】解:根據(jù)題意可知,軸,設(shè)圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點(diǎn):反比例函數(shù)綜合題.18、1【解析】

根據(jù)題意找到等量關(guān)系x2﹣6x+b=(x+a)2﹣5,根據(jù)系數(shù)相等求出a,b,即可解題.【詳解】解:由題可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b=x2+2ax+a2-5,即-6=2a,b=a2-5,解得:a=-3,b=4,∴a+b=1.【點(diǎn)睛】本題考查了配方法的實(shí)際應(yīng)用,屬于簡單題,找到等量關(guān)系求出a,b是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=;(1)(﹣1,0)或(1,0)【解析】

(1)把A的坐標(biāo)代入反比例函數(shù)的表達(dá)式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出線段OA和OB,求出△AOB的面積,根據(jù)已知S△AOPS△AOB,求出OP長,即可求出答案.【詳解】(1)把A(,1)代入反比例函數(shù)y得:k=1,所以反比例函數(shù)的表達(dá)式為y;(1)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA?OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴點(diǎn)P的坐標(biāo)為(﹣1,0)或(1,0).【點(diǎn)睛】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,三角形的面積,解直角三角形等知識點(diǎn),求出反比例函數(shù)的解析式和求出△AOB的面積是解答此題的關(guān)鍵.20、(1)本次抽查的學(xué)生人數(shù)是120人;(2)見解析;(3)126;(4)該校“家人接送”上學(xué)的學(xué)生約有500人.【解析】

(1)本次抽查的學(xué)生人數(shù):18÷15%=120(人);(2)A:結(jié)伴步行人數(shù)120﹣42﹣30﹣18=30(人),據(jù)此補(bǔ)全條形統(tǒng)計圖;(3)“自行乘車”對應(yīng)扇形的圓心角的度數(shù)360°×=126°;(4)估計該?!凹胰私铀汀鄙蠈W(xué)的學(xué)生約有:2000×25%=500(人).【詳解】解:(1)本次抽查的學(xué)生人數(shù):18÷15%=120(人),答:本次抽查的學(xué)生人數(shù)是120人;(2)A:結(jié)伴步行人數(shù)120﹣42﹣30﹣18=30(人),補(bǔ)全條形統(tǒng)計圖如下:“結(jié)伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統(tǒng)計圖中占的度數(shù)為360°×35%=126°,補(bǔ)全扇形統(tǒng)計圖,如圖所示;(3)“自行乘車”對應(yīng)扇形的圓心角的度數(shù)360°×=126°,故答案為126;(4)估計該?!凹胰私铀汀鄙蠈W(xué)的學(xué)生約有:2000×25%=500(人),答:該校“家人接送”上學(xué)的學(xué)生約有500人.【點(diǎn)睛】本題主要考查條形統(tǒng)計圖及扇形統(tǒng)計圖及相關(guān)計算,用樣本估計總體.解題的關(guān)鍵是讀懂統(tǒng)計圖,從條形統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.21、(1)3;(2)【解析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數(shù)定義求出DE與BE之比,設(shè)出DE與BE,由AB=7求出各自的值,確定出DE即可;(2)在直角三角形中,利用勾股定理求出AD與BD的長,根據(jù)tanB的值求出cosB的值,確定出BC的長,由BC﹣BD求出CD的長,利用銳角三角函數(shù)定義求出所求即可.詳解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,設(shè)DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值為.點(diǎn)睛:本題考查了解直角三角形,涉及的知識有:銳角三角函數(shù)定義,勾股定理,等腰直角三角形的判定與性質(zhì),熟練掌握各自的性質(zhì)是解答本題的關(guān)鍵.22、(1)開通隧道前,汽車從A地到B地大約要走136.4千米;(2)汽車從A地到B地比原來少走的路程為27.2千米【解析】

(1)過點(diǎn)C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進(jìn)而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進(jìn)而求出汽車從A地到B地比原來少走多少路程.【詳解】解:(1)過點(diǎn)C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:開通隧道前,汽車從A地到B地大約要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽車從A地到B地比原來少走的路程為27.2千米.【點(diǎn)睛】本題考查了勾股定理的運(yùn)用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.23、(1)證明見解析(2)cm,cm【解析】【分析】(1)連接OB,要證明PB是切線,只需證明OB⊥PB即可;(2)利用菱形、矩形的性質(zhì),求出圓心角∠COD即可解決問題.【詳解】(1)如圖連接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等邊三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切線;(2)①的長為cm時,四邊形ADPB是菱形,∵四邊形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的長=cm;②當(dāng)四邊形ADCB是矩形時,易知∠COD=120°,∴的長=cm,故答案為:cm,cm.【點(diǎn)睛】本題考查了圓的綜合題,涉及到切線的判定、矩形的性質(zhì)、菱形的性質(zhì)、弧長公式等知識,準(zhǔn)確添加輔助線、靈活應(yīng)用相關(guān)知識解決問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論