上海市七寶高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第1頁
上海市七寶高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第2頁
上海市七寶高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第3頁
上海市七寶高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第4頁
上海市七寶高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

上海市七寶高中2025屆高一數(shù)學(xué)第二學(xué)期期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù),若方程有5個(gè)解,則的取值范圍是()A. B. C. D.2.若,,則方程有實(shí)數(shù)根的概率為()A. B. C. D.3.已知圓錐的母線長為8,底面圓周長為,則它的體積是()A. B. C. D.4.在平面直角坐標(biāo)系xOy中,直線的傾斜角為()A. B. C. D.5.表示不超過的最大整數(shù),設(shè)函數(shù),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.6.若各項(xiàng)為正數(shù)的等差數(shù)列的前n項(xiàng)和為,且,則()A.9 B.14 C.7 D.187.在中,(,,分別為角、、的對邊),則的形狀為()A.等邊三角形 B.直角三角形C.等腰三角形或直角三角形 D.等腰直角三角形8.已知等比數(shù)列中,各項(xiàng)都是正數(shù),且成等差數(shù)列,則等于()A. B. C. D.9.若實(shí)數(shù)x,y滿足,則z=x+y的最小值為()A.2 B.3 C.4 D.510.若向量互相垂直,且,則的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則_________.12.已知六棱錐的底面是正六邊形,平面,.則下列命題中正確的有_____.(填序號)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直線PD與平面ABC所成的角為45°.13.如圖,在直角梯形中,//是線段上一動(dòng)點(diǎn),是線段上一動(dòng)點(diǎn),則的最大值為________.14.輾轉(zhuǎn)相除法,又名歐幾里得算法,是求兩個(gè)正整數(shù)之最大公約數(shù)的算法,它是已知最古老的算法之一,在中國則可以追溯至漢朝時(shí)期出現(xiàn)的《九章算術(shù)》.下圖中的程序框圖所描述的算法就是輾轉(zhuǎn)相除法.若輸入、的值分別為、,則執(zhí)行程序后輸出的的值為______.15.某學(xué)校高一年級舉行選課培訓(xùn)活動(dòng),共有1024名學(xué)生、家長、老師參加,其中家長256人.學(xué)校按學(xué)生、家長、老師分層抽樣,從中抽取64人,進(jìn)行某問卷調(diào)查,則抽到的家長有___人16.已知關(guān)于兩個(gè)隨機(jī)變量的一組數(shù)據(jù)如下表所示,且成線性相關(guān),其回歸直線方程為,則當(dāng)變量時(shí),變量的預(yù)測值應(yīng)該是_________.234564671013三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓,直線(1)求證:直線過定點(diǎn);(2)求直線被圓所截得的弦長最短時(shí)的值;(3)已知點(diǎn),在直線MC上(C為圓心),存在定點(diǎn)N(異于點(diǎn)M),滿足:對于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).18.為了解某城市居民的月平均用電量情況,隨機(jī)抽查了該城市100戶居民的月平均用電量(單位:度),得到頻率分布直方圖(如圖所示).數(shù)據(jù)的分組依次為、、、、、、.(1)求頻率分布直方圖中的值;(2)求該城市所有居民月平均用電量的眾數(shù)和中位數(shù)的估計(jì)值;(3)在月平均用電量為的四組用戶中,采用分層抽樣的方法抽取戶居民,則應(yīng)從月用電量在居民中抽取多少戶?19.從甲、乙、丙、丁四個(gè)人中選兩名代表,求:(1)甲被選中的概率;(2)丁沒被選中的概率.20.某種筆記本的單價(jià)是5元,買個(gè)筆記本需要y元,試用函數(shù)的三種表示法表示函數(shù).21.已知,.(1)求的值;(2)若,均為銳角,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

利用因式分解法,求出方程的解,結(jié)合函數(shù)的性質(zhì),根據(jù)題意可以求出的取值范圍.【詳解】,,或,由題意可知:,由題可知:當(dāng)時(shí),有2個(gè)解且有2個(gè)解且,當(dāng)時(shí),,因?yàn)?,所以函?shù)是偶函數(shù),當(dāng)時(shí),函數(shù)是減函數(shù),故有,函數(shù)是偶函數(shù),所以圖象關(guān)于縱軸對稱,即當(dāng)時(shí)有,,所以,綜上所述;的取值范圍是,故本題選D.【點(diǎn)睛】本題考查了已知方程解的情況求參數(shù)取值問題,正確分析函數(shù)的性質(zhì),是解題的關(guān)鍵.2、B【解析】方程有實(shí)數(shù)根,則:,即:,則:,如圖所示,由幾何概型計(jì)算公式可得,滿足題意的概率值為:.本題選擇B選項(xiàng).3、D【解析】

圓錐的底面周長,求出底面半徑,然后求出圓錐的高,即可求出圓錐的體積.【詳解】∵圓錐的底面周長為

∴圓錐的底面半徑

雙∵圓錐的母線長∴圓錐的高為∴圓錐的體積為故選D.【點(diǎn)睛】本題是基礎(chǔ)題,考查計(jì)算能力,圓錐的高的求法,熟練掌握公式是解題的關(guān)鍵.4、B【解析】

設(shè)直線的傾斜角為,,,可得,解得.【詳解】設(shè)直線的傾斜角為,,.,解得.故選:B.【點(diǎn)睛】本題考查直線的傾斜角與斜率之間的關(guān)系、三角函數(shù)求值,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.5、D【解析】

由已知可證是奇函數(shù),是互為相反數(shù),對是否為正數(shù)分類討論,即可求解.【詳解】的定義域?yàn)椋?,是奇函數(shù),設(shè),若是整數(shù),則,若不是整數(shù),則.的值域是.故選:D.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的應(yīng)用,考查對新函數(shù)定義的理解,考查分類討論思想,屬于中檔題.6、B【解析】

根據(jù)等差中項(xiàng)定義及條件式,先求得.再由等差數(shù)列的求和公式,即可求得的值.【詳解】數(shù)列為各項(xiàng)是正數(shù)的等差數(shù)列則由等差中項(xiàng)可知所以原式可化為,所以由等差數(shù)列求和公式可得故選:B【點(diǎn)睛】本題考查了等差中項(xiàng)的性質(zhì),等差數(shù)列前n項(xiàng)和的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.7、B【解析】

利用二倍角公式,正弦定理,結(jié)合和差公式化簡等式得到,得到答案.【詳解】故答案選B【點(diǎn)睛】本題考查了正弦定理,和差公式,意在考查學(xué)生的綜合應(yīng)用能力.8、C【解析】

由條件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求運(yùn)算求得結(jié)果.【詳解】∵等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,a3,2a2成等差數(shù)列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故選:C.【點(diǎn)睛】本題主要考查等差中項(xiàng)的性質(zhì),等比數(shù)列的通項(xiàng)公式,考查了整體化的運(yùn)算技巧,屬于基礎(chǔ)題.9、D【解析】

由約束條件畫出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由實(shí)數(shù),滿足作出可行域,如圖:聯(lián)立,解得,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過時(shí),直線在軸上的截距最小,此時(shí)有最小值為.故選:D.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.10、B【解析】

首先根據(jù)題意得到,再計(jì)算即可.【詳解】因?yàn)橄蛄炕ハ啻怪?,,所?所以.故選:B【點(diǎn)睛】本題主要考查平面向量模長的計(jì)算,同時(shí)考查了平面向量數(shù)量積,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意可得:點(diǎn)睛:熟記同角三角函數(shù)關(guān)系式及誘導(dǎo)公式,特別是要注意公式中的符號問題;注意公式的變形應(yīng)用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時(shí)簡化解題過程的關(guān)鍵所在.12、②④【解析】

利用題中條件,逐一分析答案,通過排除和篩選,得到正確答案.【詳解】∵AD與PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六邊形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直線BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案為②④.【點(diǎn)睛】本題考查命題真假的判斷,解題時(shí)要注意直線與平面成的角、直線與平面垂直的性質(zhì)的合理運(yùn)用,屬于中檔題.13、2【解析】

建立平面直角坐標(biāo)系,得到相應(yīng)點(diǎn)的坐標(biāo)及向量的坐標(biāo),把,利用向量的數(shù)量積轉(zhuǎn)化為的函數(shù),即可求解.【詳解】建立如圖所示的平面直角坐標(biāo)系,因?yàn)?,,所?因?yàn)?,,所?因?yàn)?,所以?dāng)時(shí),取得最大值,最大值為.故答案為:.【點(diǎn)睛】本題主要考查了平面向量的線性運(yùn)算,以及向量的數(shù)量積的運(yùn)算的應(yīng)用,其中解答中建立平面直角坐標(biāo)系,結(jié)合向量的線性運(yùn)算和數(shù)量積的運(yùn)算,得到的函數(shù)關(guān)系式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、【解析】

程序的運(yùn)行功能是求,的最大公約數(shù),根據(jù)輾轉(zhuǎn)相除法可得的值.【詳解】由程序語言知:算法的功能是利用輾轉(zhuǎn)相除法求、的最大公約數(shù),當(dāng)輸入的,,;,,可得輸出的.【點(diǎn)睛】本題主要考查了輾轉(zhuǎn)相除法的程序框圖的理解,掌握輾轉(zhuǎn)相除法的操作流程是解題關(guān)鍵.15、16【解析】

利用分層抽樣的性質(zhì),直接計(jì)算,即可求得,得到答案.【詳解】由題意,可知共有1024名學(xué)生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進(jìn)行某問卷調(diào)查,則抽到的家長人數(shù)為人.故答案為16【點(diǎn)睛】本題主要考查了分層抽樣的應(yīng)用,其中解答中熟記分層抽樣的概念和性質(zhì),準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、21.2【解析】

計(jì)算出,,可知回歸方程經(jīng)過樣本中心點(diǎn),從而求得,代入可得答案.【詳解】由表中數(shù)據(jù)知,,,線性回歸直線必過點(diǎn),所以將,代入回歸直線方程中,得,所以當(dāng)時(shí),.【點(diǎn)睛】本題主要考查回歸方程的相關(guān)計(jì)算,難度很小.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)直線過定點(diǎn)(2).(3)在直線上存在定點(diǎn),使得為常數(shù).【解析】分析:(Ⅰ)利用直線系方程的特征,直接求解直線l過定點(diǎn)A的坐標(biāo).(Ⅱ)當(dāng)AC⊥l時(shí),所截得弦長最短,由題知,r=2,求出AC的斜率,利用點(diǎn)到直線的距離,轉(zhuǎn)化求解即可.(Ⅲ)由題知,直線MC的方程為,假設(shè)存在定點(diǎn)N滿足題意,則設(shè)P(x,y),,得,且,求出λ,然后求解比值.詳解:(Ⅰ)依題意得,令且,得直線過定點(diǎn)(Ⅱ)當(dāng)時(shí),所截得弦長最短,由題知,,得,由得(Ⅲ)法一:由題知,直線的方程為,假設(shè)存在定點(diǎn)滿足題意,則設(shè),,得,且整理得,上式對任意恒成立,且解得,說以(舍去,與重合),綜上可知,在直線上存在定點(diǎn),使得為常數(shù)點(diǎn)睛:過定點(diǎn)的直線系A(chǔ)1x+B1y+C1+λ(A2x+B2y+C2)=0表示通過兩直線l1∶A1x+B1y+C1=0與l2∶A2x+B2y+C2=0交點(diǎn)的直線系,而這交點(diǎn)即為直線系所通過的定點(diǎn).18、(1);(2)眾數(shù)為度,中位數(shù)為度;(3)戶.【解析】

(1)利用頻率分布直方圖中所有矩形面積之和為可求得的值;(2)利用頻率分布直方圖中最高矩形底邊的中點(diǎn)值為眾數(shù),可得出該城市所有居民月平均用電量的眾數(shù),利用中位數(shù)左邊的矩形面積之和為可求得該城市所有居民月平均用電量的中位數(shù);(3)計(jì)算出月用電量在的用戶在月平均用電量為的用戶中所占的比例,乘以可得出結(jié)果.【詳解】(1)因?yàn)?,所以;?)月平均用電量眾數(shù)的估計(jì)值為度,,故中位數(shù),所以,,解得,故月平均用電量中位數(shù)的估計(jì)值為度;(3)月均用電量在、、、的用戶分別為戶、戶、戶、戶,其中,月均用電量為的用戶在月平均用電量為的用戶中所占的比例為,所以在月均用電量為的用戶中應(yīng)抽?。☉簦?【點(diǎn)睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)、眾數(shù),同時(shí)也考查了利用分層抽樣求樣本容量,考查計(jì)算能力,屬于基礎(chǔ)題.19、(1);(2).【解析】

(1)先確定從甲、乙、丙、丁四個(gè)人中選兩名代表總事件數(shù),再確定甲被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率(2)先確定從甲、乙、丙、丁四個(gè)人中選兩名代表總事件數(shù),再確定丁沒被選中的事件數(shù),最后根據(jù)古典概型概率公式求概率.【詳解】(1)從甲、乙、丙、丁四個(gè)人中選兩名代表共有:甲乙,甲丙,甲丁,乙丙,乙丁、丙丁共6種基本事件,其中甲被選中包括甲乙,甲丙,甲丁三種基本事件,所以甲被選中的概率為.(2)丁沒被選中包括甲乙,甲丙,乙丙三種基本事件,所以丁沒被選中的概率為.點(diǎn)睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素?cái)?shù)目較多的題目.20、見解析.【解析】

根據(jù)定義域,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論