版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省安寧市實驗石江學(xué)校2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知平面向量與的夾角為,且,則()A. B. C. D.2.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,C C.B,C,D D.A,C,D3.在天氣預(yù)報中,有“降水概率預(yù)報”,例如預(yù)報“明天降水的概率為80%”,這是指()A.明天該地區(qū)有80%的地方降水,有20%的地方不降水B.明天該地區(qū)降水的可能性為80%C.氣象臺的專家中有80%的人認為會降水,另外有20%的專家認為不降水D.明天該地區(qū)有80%的時間降水,其他時間不降水4.已知等比數(shù)列中,各項都是正數(shù),且成等差數(shù)列,則等于()A. B. C. D.5.直線傾斜角的范圍是()A.(0,] B.[0,] C.[0,π) D.[0,π]6.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.7.的內(nèi)角,,的對邊分別為,,.已知,則()A. B. C. D.8.法國學(xué)者貝特朗發(fā)現(xiàn),在研究事件A“在半徑為1的圓內(nèi)隨機地取一條弦,其長度超過圓內(nèi)接等邊三角形的邊長3”的概率的過程中,基于對“隨機地取一條弦”的含義的的不同理解,事件A的概率PA存在不同的容案該問題被稱為貝特朗悖論現(xiàn)給出種解釋:若固定弦的一個端點,另個端點在圓周上隨機選取,則PA.12 B.13 C.19.函數(shù)f(x)=log3(2﹣x)的定義域是()A.[2,+∞) B.(2,+∞) C.(﹣∞,2) D.(﹣∞,2]10.若角的頂點與坐標原點重合,始邊與x軸的正半軸重合,終邊經(jīng)過點,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.直線與直線垂直,則實數(shù)的值為_______.12.已知,則的值為______13.若,則__________.14.在等差數(shù)列中,公差不為零,且、、恰好為某等比數(shù)列的前三項,那么該等比數(shù)列公比的值等于____________.15.若數(shù)列滿足(),且,,__.16.如圖,在中,,,點D為BC的中點,設(shè),.的值為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關(guān)于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.18.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項公式;(3)設(shè),數(shù)列的前n項和,求證:19.設(shè)數(shù)列滿足(,),且,.(1)求和的值;(2)求數(shù)列的前項和.20.已知數(shù)列的前n項和為,,.(1)證明:數(shù)列為等比數(shù)列;(2)證明:.21.某市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)若從第,,組中用分層抽樣的方法抽取名志愿者參廣場的宣傳活動,應(yīng)從第,,組各抽取多少名志愿者?(2)在(1)的條件下,該市決定在這名志愿者中隨機抽取名志愿者介紹宣傳經(jīng)驗,求第組志愿者有被抽中的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)平面向量數(shù)量積的運算法則,將平方運算可得結(jié)果.【詳解】∵,∴,∴cos=4,∴,故選A.【點睛】本題考查了利用平面向量的數(shù)量積求模的應(yīng)用問題,考查了數(shù)量積與模之間的轉(zhuǎn)化,是基礎(chǔ)題目.2、A【解析】
根據(jù)向量共線定理進行判斷即可.【詳解】因為,且,有公共點B,所以A,B,D三點共線.故選:A.【點睛】本題考查了用向量共線定理證明三點共線問題,屬于??碱}.3、B【解析】
降水概率指的是降水的可能性,根據(jù)概率的意義作出判斷即可.【詳解】“明天降水的概率為80%”指的是“明天該地區(qū)降水的可能性是80%”,且明天下雨的可能性比較大,故選:B.【點睛】本題主要考查了概率的意義,掌握概率是反映出現(xiàn)的可能性大小的量是解題的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】
由條件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求運算求得結(jié)果.【詳解】∵等比數(shù)列{an}中,各項都是正數(shù),且a1,a3,2a2成等差數(shù)列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故選:C.【點睛】本題主要考查等差中項的性質(zhì),等比數(shù)列的通項公式,考查了整體化的運算技巧,屬于基礎(chǔ)題.5、C【解析】試題分析:根據(jù)直線傾斜角的定義判斷即可.解:直線傾斜角的范圍是:[0,π),故選C.6、B【解析】
過點作于點,過點作于點,在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點作于點,過點作于點,如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點睛】本題考查了解三角形的應(yīng)用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.7、A【解析】
由正弦定理,整理得到,即可求解,得到答案.【詳解】在中,因為,由正弦定理可得,因為,則,所以,即,又因為,則,故選A.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練應(yīng)用正弦定理的邊角互化,以及特殊角的三角函數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.8、B【解析】
由幾何概型中的角度型得:P(A)=2π【詳解】設(shè)固定弦的一個端點為A,則另一個端點在圓周上BC劣弧上隨機選取即可滿足題意,則P(A)=2π故選:B.【點睛】本題考查了幾何概型中的角度型,屬于基礎(chǔ)題.9、C【解析】試題分析:利用對數(shù)函數(shù)的性質(zhì)求解.解:函數(shù)f(x)=log3(1﹣x)的定義域滿足:1﹣x>0,解得x<1.∴函數(shù)f(x)=log3(1﹣x)的定義域是(﹣∞,1).故選C.考點:對數(shù)函數(shù)的定義域.10、C【解析】
根據(jù)三角函數(shù)定義結(jié)合正弦的二倍角公式計算即可【詳解】由題意,∴,,.故選:C.【點睛】本題考查三角函數(shù)的定義,考查二倍角的正弦公式,掌握三角函數(shù)定義是解題關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由題得(-1),解之即得a的值.【詳解】由題得(-1),所以a=2.故答案為;2【點睛】本題主要考查兩直線垂直的斜率關(guān)系,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.12、【解析】
根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.13、;【解析】
把分子的1換成,然后弦化切,代入計算.【詳解】.故答案為-1.【點睛】本題考查三角函數(shù)的化簡求值.解題關(guān)鍵是“1”的代換,即,然后弦化切.14、4【解析】
由題意將表示為的方程組求解得,即可得等比數(shù)列的前三項分別為﹑、,則公比可求【詳解】由題意可知,,又因為,,代入上式可得,所以該等比數(shù)列的前三項分別為﹑、,所以.故答案為:4【點睛】本題考查等差等比數(shù)列的基本量計算,考查計算能力,是基礎(chǔ)題15、1【解析】
由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構(gòu)成首項為1,公比為,偶數(shù)項構(gòu)成首項為,公比為的等比數(shù)列,當為奇數(shù)時,可得,當為偶數(shù)時,可得.所以.故答案為:1.【點睛】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】
在和在中,根據(jù)正弦定理,分別表示出.由可得等式,代入已知條件化簡即可得解.【詳解】在中,由正弦定理可得,則在中,由正弦定理可得,則點D為BC的中點,則所以因為,,由誘導(dǎo)公式可知代入上述兩式可得所以故答案為:【點睛】本題考查了正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)84;(2);(3)【解析】
(1)每個小矩形的面積乘以該組中間值,所得數(shù)據(jù)求和就是平均數(shù);(2)根據(jù)需求量分段表示函數(shù)關(guān)系;(3)根據(jù)(1)利潤T不少于100元時,即,即,求出其頻率,即可估計概率.【詳解】(1)估計食堂面包需求量的平均數(shù)為:(2)解:由題意,當時,利潤,當時,利潤,即T關(guān)于x的函數(shù)解析式(3)解:由題意,設(shè)利潤T不少于100元為事件A,由(1)知,利潤T不少于100元時,即,即,由直方圖可知,當時,所求概率為【點睛】此題考查頻率分布直方圖,根據(jù)頻率分布直方圖求平均數(shù),計算頻率,以及建立函數(shù)模型解決實際問題,綜合性比較強.18、(1);;(2)(3)見證明;【解析】
(1)令可求得;(2)在已知等式基礎(chǔ)上,用代得另一等式,然后相減,可求得,并檢驗一下是否適合此表達式;(3)用裂項相消法求和.【詳解】解:(1)由已知得,∴(2)由,①得時,,②①-②得∴,也適合此式,∴().(3)由(2)得,∴∴∵,∴∴【點睛】本題考查由數(shù)列的通項公式,考查裂項相消法求和.求通項公式時的方法與已知求的方法一樣,本題就相當于已知數(shù)列的前項和,要求.注意首項求法的區(qū)別.19、(1),;(2)【解析】
(1)由已知求得,可得,取即可求得;(2)由,得,可得數(shù)列是以為首項,以1為公差的等差數(shù)列,由此求得數(shù)列的通項公式,再由錯位相減法求數(shù)列的前項和.【詳解】解:(1),且,,,即.,取,得,即;(2)由,得,數(shù)列是以為首項,以為公差的等差數(shù)列,則.則.,,則,.【點睛】本題考查數(shù)列求和,訓(xùn)練了利用錯位相減法求數(shù)列的前項和,屬于中檔題.20、(1)證明見解析(2)證明見解析【解析】
(1)將已知遞推式取倒數(shù)得,,再結(jié)合等比數(shù)列的定義,即可得證;(2)由(1)得,再利用基本不等式以及放縮法和等比數(shù)列的求和公式,結(jié)合不等式的性質(zhì),即可得證.【詳解】(1),,可得,即有,可得數(shù)列為公比為2,首項為2的等比數(shù)列;(2)由(1)可得,即,由基本不等式可得,,即有.【點睛】本題考查等比數(shù)列的定義和通項公式、求和公式、考查構(gòu)造數(shù)列法以及放縮法的運用,考查化簡運算能力和推理能力,屬于中檔題.21、(1)分別抽取人,人,人;(2)【解析】
(1)頻率分布直方圖各組頻率等于各組矩形的面積,進而算出各組頻數(shù),再根據(jù)分層抽樣總體及各層抽樣比例相同求解;(2)列出從名志愿者中隨機抽取名志愿者所有的情況,再根據(jù)古典概型概率公式求解.【詳解】(1)第組的人數(shù)為,第組的人數(shù)為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度門窗行業(yè)節(jié)能門窗產(chǎn)品認證與推廣合同3篇
- 2025年度門面房租賃權(quán)質(zhì)押貸款及還款計劃合同3篇
- 2025版內(nèi)蒙古工業(yè)大學(xué)校園廢棄物資源化利用合同4篇
- 二零二五年度廚房設(shè)備進出口貿(mào)易合同范本8篇
- 2025年度窗簾布料研發(fā)與生產(chǎn)合作協(xié)議3篇
- 2025年度高檔木地板進口貿(mào)易合同范本2篇
- 2025版物流行業(yè)知識產(chǎn)權(quán)保護合同樣本4篇
- 二零二五年度地下水文地質(zhì)調(diào)查與打井合同4篇
- 2025年出租車座套環(huán)保材料廣告合作合同范本3篇
- 二零二五年度船舶租賃與運營管理合同3篇
- 電網(wǎng)調(diào)度基本知識課件
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 《保密法》培訓(xùn)課件
- 回收二手機免責(zé)協(xié)議書模板
- (正式版)JC∕T 60023-2024 石膏條板應(yīng)用技術(shù)規(guī)程
- (權(quán)變)領(lǐng)導(dǎo)行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 2024年智慧工地相關(guān)知識考試試題及答案
- GB/T 8005.2-2011鋁及鋁合金術(shù)語第2部分:化學(xué)分析
- 不動產(chǎn)登記實務(wù)培訓(xùn)教程課件
- 不銹鋼制作合同范本(3篇)
評論
0/150
提交評論