版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省名校2025屆高一下數(shù)學(xué)期末綜合測試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.某三棱錐的三視圖如圖所示,該三棱錐的外接球表面積為()A. B. C. D.2.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.3.已知向量a=(1,-1),bA.-1 B.0 C.1 D.24.如圖所示的程序框圖,若執(zhí)行的運(yùn)算是,則在空白的執(zhí)行框中,應(yīng)該填入A.B.C.D.5.在三棱錐中,平面,,,,,則三棱錐外接球的體積為()A. B. C. D.6.在中,,BC邊上的高等于,則()A. B. C. D.7.在等差數(shù)列an中,若a3+A.6 B.7 C.8 D.98.設(shè)定義域?yàn)榈钠婧瘮?shù)是增函數(shù),若對恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.已知,是兩個單位向量,且夾角為,則與數(shù)量積的最小值為()A. B. C. D.10.已知等差數(shù)列an的前n項(xiàng)和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.1二、填空題:本大題共6小題,每小題5分,共30分。11.不論k為何實(shí)數(shù),直線通過一個定點(diǎn),這個定點(diǎn)的坐標(biāo)是______.12.在邊長為2的正三角形ABC內(nèi)任取一點(diǎn)P,則使點(diǎn)P到三個頂點(diǎn)的距離至少有一個小于1的概率是________.13.已知,則________.14.把正整數(shù)排列成如圖甲所示的三角形數(shù)陣,然后擦去偶數(shù)行中的奇數(shù)和奇數(shù)行中的偶數(shù),得到如圖乙所示的三角形數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到一個數(shù)列,若,則________________.15.已知三棱錐外接球的表面積為,面,則該三棱錐體積的最大值為____。16.設(shè)等比數(shù)列滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,A,B,C所對的邊分別為,滿足.(I)求角A的大??;(Ⅱ)若,D為BC的中點(diǎn),且的值.18.已知.(I)若函數(shù)有三個零點(diǎn),求實(shí)數(shù)的值;(II)若對任意,均有恒成立,求實(shí)數(shù)的取值范圍.19.某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;(2)試估計該公司在若干地區(qū)各投入4萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:廣告投入(單位:萬元)12345銷售收益(單位:萬元)2337由表中的數(shù)據(jù)顯示,與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.(參考公式:)20.為了研究某種藥物,用小白鼠進(jìn)行試驗(yàn),發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關(guān)系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度與時間t滿足關(guān)系式:現(xiàn)對小白鼠同時進(jìn)行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.(1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值?(2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.21.如圖所示,在四棱錐P-ABCD中,,,,平面底面ABCD,E和F分別是CD和PC的中點(diǎn).求證:(1)平面BEF;(2)平面平面PCD.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
根據(jù)三視圖還原幾何體,由三棱錐的幾何特征即可求出其外接球表面積.【詳解】根據(jù)三視圖可知,該幾何體如圖所示:所以該幾何體的外接球,即是長方體的外接球.因?yàn)?,所以外接球直徑.故該三棱錐的外接球表面積為.故選:D.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,并計算其外接球的表面積,意在考查學(xué)生的直觀想象能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.2、A【解析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡即得所求.【詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)?,所以?故選:A【點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.3、C【解析】
由向量的坐標(biāo)運(yùn)算表示2a【詳解】解:因?yàn)閍=(1,-1),b=(-1,2故選C.【點(diǎn)睛】本題考查了向量的加法和數(shù)量積的坐標(biāo)運(yùn)算;屬于基礎(chǔ)題目.4、D【解析】試題分析:解:運(yùn)行第一次:,不成立;運(yùn)行第二次:,不成立;運(yùn)行第三次:,不成立;運(yùn)行第四次:,不成立;運(yùn)行第四次:,成立;輸出所以應(yīng)選D.考點(diǎn):循環(huán)結(jié)構(gòu).5、B【解析】
在三棱錐中,求得,又由底面,所以,在直角中,求得,進(jìn)而得到三棱錐外接球的直徑,得到,利用體積公式,即可求解.【詳解】由題意知,在三棱錐中,,,,所以,又由底面,所以,在直角中,,所以,根據(jù)球的性質(zhì),可得三棱錐外接球的直徑為,即,所以球的體積為,故選B.【點(diǎn)睛】本題主要考查了與球有關(guān)的組合體中球的體積的計算,其中解答中根據(jù)組合體的結(jié)構(gòu)特征和球的性質(zhì),準(zhǔn)確求解球的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.6、C【解析】試題分析:設(shè),故選C.考點(diǎn):解三角形.7、C【解析】
通過等差數(shù)列的性質(zhì)可得答案.【詳解】因?yàn)閍3+a9=17【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì),難度不大.8、A【解析】
由題意可得,即為,可得恒成立,討論是否為0,結(jié)合換元法和基本不等式,可得所求范圍.【詳解】解:由題意可得,即為,可得恒成立,當(dāng)時,上式顯然成立;當(dāng)時,可得,設(shè),,可得,由,可得,可得,即,故選:A.【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用,考查不等式恒成立問題解法,注意運(yùn)用參數(shù)分離和換元法,考查化簡運(yùn)算能力,屬于中檔題.9、B【解析】
根據(jù)條件可得,,,然后進(jìn)行數(shù)量積的運(yùn)算即可.【詳解】根據(jù)條件,,,,當(dāng)時,取最小值.故選:B【點(diǎn)睛】本題考查了向量數(shù)量積的運(yùn)算,同時考查了二次函數(shù)的最值,屬于基礎(chǔ)題.10、B【解析】
直角利用待定系數(shù)法可得答案.【詳解】因?yàn)镾8=8a1+a82【點(diǎn)睛】本題主要考查等差數(shù)列的基本量的相關(guān)計算,難度不大.二、填空題:本大題共6小題,每小題5分,共30分。11、(2,3)【解析】
將直線方程變形為,它表示過兩直線和的交點(diǎn)的直線系,解方程組,得上述直線恒過定點(diǎn),故答案為.【方法點(diǎn)睛】本題主要考查待定直線過定點(diǎn)問題.屬于中檔題.探索曲線過定點(diǎn)的常見方法有兩種:①可設(shè)出曲線方程,然后利用條件建立等量關(guān)系進(jìn)行消元(往往可以化為的形式,根據(jù)求解),借助于曲線系的思想找出定點(diǎn)(直線過定點(diǎn),也可以根據(jù)直線的各種形式的標(biāo)準(zhǔn)方程找出定點(diǎn)).②從特殊情況入手,先探求定點(diǎn),再證明與變量無關(guān).12、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當(dāng)P落在其內(nèi)時符合要求,∴P==.13、【解析】
利用向量內(nèi)積的坐標(biāo)運(yùn)算以及向量模的坐標(biāo)表示,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,向量,則,,所以.故答案為【點(diǎn)睛】本題主要考查了向量內(nèi)積的坐標(biāo)運(yùn)算,以及向量模的坐標(biāo)運(yùn)算的應(yīng)用,其中解答中熟記向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】
由圖乙可得:第行有個數(shù),且第行最后的一個數(shù)為,從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,注意到,,據(jù)此確定n的值即可.【詳解】分析圖乙,可得①第行有個數(shù),則前行共有個數(shù),②第行最后的一個數(shù)為,③從第三行開始每一行的數(shù)從左到右都是公差為的等差數(shù)列,又由,,則,則出現(xiàn)在第行,第行第一個數(shù)為,這行中第個數(shù)為,前行共有個數(shù),則為第個數(shù).故填.【點(diǎn)睛】歸納推理是由部分到整體、由特殊到一般的推理,由歸納推理所得的結(jié)論不一定正確,通常歸納的個體數(shù)目越多,越具有代表性,那么推廣的一般性命題也會越可靠,它是一種發(fā)現(xiàn)一般性規(guī)律的重要方法.15、【解析】
根據(jù)球的表面積計算出球的半徑.利用勾股定理計算出三角形外接圓的半徑,根據(jù)正弦定理求得的長,再根據(jù)圓內(nèi)三角形面積的最大值求得三角形面積的最大值,由此求得三棱錐體積的最大值.【詳解】畫出圖像如下圖所示,其中是外接球的球心,是底面三角形的外心,.設(shè)球的半徑為,三角形外接圓的半徑為,則,故在中,.在三角形中,由正弦定理得.故三角形為等邊三角形,其高為.由于為定值,而三角形的高等于時,三角形的面積取得最大值,由于為定值,故三棱錐的體積最大值為.【點(diǎn)睛】本小題主要考查外接球有關(guān)計算,考查三棱錐體積的最大值的計算,屬于中檔題.16、【解析】試題分析:設(shè)等比數(shù)列的公比為,由得,,解得.所以,于是當(dāng)或時,取得最大值.考點(diǎn):等比數(shù)列及其應(yīng)用三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II).【解析】
(I)得,求出.(Ⅱ)由題意可知,化簡得,再結(jié)合余弦定理求出,再利用正弦定理求出的值.【詳解】(I),所以,所以因?yàn)?,所以,所?Ⅱ)由題意可知:所以所以又因?yàn)椋?,因?yàn)?,所以由正弦定理可得,所以【點(diǎn)睛】本題主要考查三角恒等變換,考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.18、(I)或;(II).【解析】
(I)令,將有三個零點(diǎn)問題,轉(zhuǎn)化為有三個不同的解的解決.畫出和的圖像,結(jié)合圖像以及二次函數(shù)的判別式分類討論,由此求得的值.(II)令,將恒成立不等式等價轉(zhuǎn)化為恒成立,通過對分類討論,求得的最大值,由此求得的取值范圍.【詳解】(I)由題意等價于有三個不同的解由,可得其函數(shù)圖象如圖所示:聯(lián)立方程:,由可得結(jié)合圖象可知.同理,由可得,因?yàn)?,結(jié)合圖象可知,綜上可得:或.(Ⅱ)設(shè),原不就價于,兩邊同乘得:,設(shè),原題等價于的最大值.(1)當(dāng)時,,易得,(2),,易得,所以的最大值為16,即,故.【點(diǎn)睛】本小題主要考查根據(jù)函數(shù)零點(diǎn)個數(shù)求參數(shù),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查不等式恒成立問題的求解策略,考查分類討論的數(shù)學(xué)思想,屬于難題.19、(1)2;(2)5;(3)空白欄中填5,【解析】
(1)根據(jù)頻率等于小長方形的面積以及頻率和為,得到關(guān)于的等式,求解出即可;(2)根據(jù)各組數(shù)據(jù)的組中值與頻率的乘積之和得到對應(yīng)的銷售收益的平均值;(3)先填寫空白欄數(shù)據(jù),然后根據(jù)所給數(shù)據(jù)計算出,即可求解出回歸直線方程.【詳解】(1)設(shè)各小長方形的寬度為.由頻率分布直方圖中各小長方形的面積總和為1,可知,解得.故圖中各小長方形的寬度為2.(2)由(1)知各小組依次是,其中點(diǎn)分別為對應(yīng)的頻率分別為故可估計平均值為.(3)由(2)可知空白欄中填5.由題意可知,,,根據(jù)公式,可求得,.所以所求的回歸直線方程為.【點(diǎn)睛】本題考查頻率分布直方圖的實(shí)際應(yīng)用以及回歸直線方程的求法,難度一般.(1)頻率分布直方圖中,小矩形的面積代表該組數(shù)據(jù)的頻率,所有小矩形面積之和為;(2)求解回歸直線方程時,先求解出,然后根據(jù)回歸直線方程過樣本點(diǎn)的中心再求解出.20、(1)見解析;(2)0.【解析】
(1)藥物在白鼠血液內(nèi)的濃度y與時間t的關(guān)系為:當(dāng)a=1時,y=y(tǒng)1+y2;①當(dāng)0<t<1時,y=﹣t4=﹣()2,所以ymax=f();②當(dāng)1≤t≤3時,∵,所以ymax=7﹣2(當(dāng)t時取到),因?yàn)?,故ymax=f().(2)由題意y①??,又0<t<1,得出a≤1;②??由于1≤t≤3得到,令,則,所以,綜上得到以0.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車批量訂購合同4篇
- 2025年度體育賽事代理運(yùn)營管理合同樣本4篇
- 2025年度生態(tài)停車場車位購置協(xié)議4篇
- 生物活性營養(yǎng)土項(xiàng)目可行性研究報告模板范文(立項(xiàng)備案項(xiàng)目申請)
- 2025年新生入學(xué)教育法律協(xié)議書(綜合服務(wù))3篇
- 2025年度個人信用評分服務(wù)協(xié)議3篇
- 2025年度個人股權(quán)交易合同范本:股權(quán)轉(zhuǎn)讓流程與稅務(wù)籌劃4篇
- 2025年度企業(yè)項(xiàng)目合作協(xié)議范本4篇
- 2025年浙江澤興環(huán)保工程有限公司招聘筆試參考題庫含答案解析
- 二零二五年度林業(yè)生態(tài)恢復(fù)苗木采購合同文本4篇
- 安徽省合肥市包河區(qū)2023-2024學(xué)年九年級上學(xué)期期末化學(xué)試題
- 《酸堿罐區(qū)設(shè)計規(guī)范》編制說明
- PMC主管年終總結(jié)報告
- 售樓部保安管理培訓(xùn)
- 倉儲培訓(xùn)課件模板
- 2025屆高考地理一輪復(fù)習(xí)第七講水循環(huán)與洋流自主練含解析
- GB/T 44914-2024和田玉分級
- 2024年度企業(yè)入駐跨境電商孵化基地合作協(xié)議3篇
- 《形勢與政策》課程標(biāo)準(zhǔn)
- 2023年海南省公務(wù)員錄用考試《行測》真題卷及答案解析
- 橋梁監(jiān)測監(jiān)控實(shí)施方案
評論
0/150
提交評論