上海市寶山區(qū)海濱中學(xué)2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第1頁
上海市寶山區(qū)海濱中學(xué)2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第2頁
上海市寶山區(qū)海濱中學(xué)2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第3頁
上海市寶山區(qū)海濱中學(xué)2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第4頁
上海市寶山區(qū)海濱中學(xué)2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海市寶山區(qū)海濱中學(xué)2025屆數(shù)學(xué)高一下期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)的圖象分別向左平移m(m>0)個單位,向右平移n(n>0>個單位,所得到的兩個圖象都與函數(shù)的圖象重合的最小值為()A. B. C. D.2.的內(nèi)角、、所對的邊分別為、、,下列命題:(1)三邊、、既成等差數(shù)列,又成等比數(shù)列,則是等邊三角形;(2)若,則是等腰三角形;(3)若,則;(4)若,則;(5),,若唯一確定,則.其中,正確命題是()A.(1)(3)(4) B.(1)(2)(3) C.(1)(2)(5) D.(3)(4)(5)3.不等式的解集為()A. B. C. D.4.下圖是實現(xiàn)秦九韶算法的一個程序框圖,若輸入的,,依次輸入的為2,2,5,則輸出的()A.10 B.12 C.60 D.655.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形6.已知表示兩條不同的直線,表示三個不同的平面,給出下列四個命題:①,,,則;②,,,則;③,,,則;④,,,則其中正確的命題個數(shù)是()A.1 B.2 C.3 D.47.在中,,,,則為()A. B. C. D.8.已知數(shù)列滿足,,則()A.4 B.-4 C.8 D.-89.已知等差數(shù)列中,,.若公差為某一自然數(shù),則n的所有可能取值為()A.3,23,69 B.4,24,70 C.4,23,70 D.3,24,7010.已知是邊長為4的等邊三角形,為平面內(nèi)一點,則的最小值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在銳角中,則的值等于.12.已知,則的值為______13.已知圓錐的底面半徑為3,體積是,則圓錐側(cè)面積等于___________.14.已知滿足約束條件,則的最大值為__15.設(shè)等比數(shù)列滿足a1+a2=–1,a1–a3=–3,則a4=___________.16.已知數(shù)列中,,,設(shè),若對任意的正整數(shù),當(dāng)時,不等式恒成立,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求分?jǐn)?shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取個,求至多有人在分?jǐn)?shù)段內(nèi)的概率.18.已知的內(nèi)角所對的邊分別為,且,.(1)若,求角的值;(2)若,求的值.19.在ΔABC中,角A,B,C的對邊分別為a,b,c,且滿足3(b(1)求角B的大小;(2)若ΔABC的面積為32,B是鈍角,求b20.已知三棱柱(如圖所示),底面為邊長為2的正三角形,側(cè)棱底面,,為的中點.(1)求證:平面;(2)若為的中點,求證:平面;(3)求三棱錐的體積.21.某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設(shè)備,該設(shè)備的第1年的維護(hù)費支出為20萬元,從第2年到第6年,每年的維修費增加4萬元,從第7年開始,每年維修費為上一年的125%.(1)求第n年該設(shè)備的維修費的表達(dá)式;(2)設(shè),若萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對設(shè)備更新,求在第幾年必須對該設(shè)備進(jìn)行更新?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

求出函數(shù)的圖象分別向左平移個單位,向右平移個單位后的函數(shù)解析式,再根據(jù)其圖象與函數(shù)的圖象重合,可分別得關(guān)于,的方程,解之即可.【詳解】解:將函數(shù)的圖象向左平移個單位,得函數(shù),其圖象與的圖象重合,,,,故,,,當(dāng)時,取得最小值為.將函數(shù)的圖象向右平移個單位,得到函數(shù),其圖象與的圖象重合,,,,故,,當(dāng)時,取得最小值為,的最小值為,故答案為:.【點睛】本題主要考查誘導(dǎo)公式,函數(shù)的圖象變換規(guī)律,屬于基礎(chǔ)題.2、A【解析】

由等差數(shù)列和等比數(shù)列中項性質(zhì)可判斷(1);由正弦定理和二倍角公式、誘導(dǎo)公式,可判斷(2);由三角形的邊角關(guān)系和余弦函數(shù)的單調(diào)性可判斷(3);由余弦定理和基本不等式可判斷(4);由正弦定理和三角形的邊角關(guān)系可判斷(5).【詳解】解:若、、既成等差數(shù)列,又成等比數(shù)列,則,,則,得,得,得,則是等邊三角形,故(1)正確;若,則,則,則或,即或,則△ABC是等腰或直角三角形,故(2)錯誤;若,則,則,故(3)正確;若,則,則,由得,則,則,故(4)正確;若,,則,即,又,若唯一確定,則或,則或,故(5)錯誤;故選:A.【點睛】本題主要考查正弦定理和余弦定理的運用,以及三角形的形狀的判斷,考查化簡運算能力,屬于中檔題.3、B【解析】

可將分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.【詳解】原不等式可化為,其解集為,故選B.【點睛】一般地,等價于,而則等價于,注意分式不等式轉(zhuǎn)化為整式不等式時分母不為零.4、D【解析】,,判斷否,,,判斷否,,,判斷是,輸出.故選.5、C【解析】

由基本不等式得出,將三個不等式相加得出,由等號成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個不等式相加得,當(dāng)且僅當(dāng)時取等號,所以,是等邊三角形,故選C.【點睛】本題考查三角形形狀的判斷,考查基本不等式的應(yīng)用,利用基本不等式要注意“一正、二定、三相等”條件的應(yīng)用,考查推理能力,屬于中等題.6、B【解析】

根據(jù)線面和線線平行與垂直的性質(zhì)逐個判定即可.【詳解】對①,,,不一定有,故不一定成立.故①錯誤.對②,令為底面為直角三角形的直三棱柱的三個側(cè)面,且,,,但此時,故不一定成立.故②錯誤.對③,,,,則成立.故③正確.對④,若,,則,或,又,則.故④正確.綜上,③④正確.故選:B【點睛】本題主要考查了根據(jù)線面、線線平行與垂直的性質(zhì)判斷命題真假的問題,需要根據(jù)題意舉出反例或者根據(jù)判定定理判定,屬于中檔題.7、D【解析】

利用正弦定理得到答案.【詳解】根據(jù)正弦定理:即:答案選D【點睛】本題考查了正弦定理,意在考查學(xué)生的計算能力.8、C【解析】

根據(jù)遞推公式,逐步計算,即可求出結(jié)果.【詳解】因為數(shù)列滿足,,所以,,.故選C【點睛】本題主要考查由遞推公式求數(shù)列中的項,逐步代入即可,屬于基礎(chǔ)題型.9、B【解析】試題分析:由等差數(shù)列的通項公式得,公差,所以,可能為,的所有可能取值為選.考點:1.等差數(shù)列及其通項公式;2.數(shù)的整除性.10、A【解析】

建立平面直角坐標(biāo)系,表示出點的坐標(biāo),利用向量坐標(biāo)運算和平面向量的數(shù)量積的運算,求得最小值,即可求解.【詳解】由題意,以中點為坐標(biāo)原點,建立如圖所示的坐標(biāo)系,則,設(shè),則,所以,所以當(dāng)時,取得最小值為,故選A.【點睛】本題主要考查了平面向量數(shù)量積的應(yīng)用問題,根據(jù)條件建立坐標(biāo)系,利用坐標(biāo)法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】設(shè)由正弦定理得12、【解析】

根據(jù)兩角差的正弦公式,化簡,解出的值,再平方,即可求解.【詳解】由題意,可知,,平方可得則故答案為:【點睛】本題考查三角函數(shù)常用公式關(guān)系轉(zhuǎn)換,屬于基礎(chǔ)題.13、【解析】試題分析:求圓錐側(cè)面積必須先求圓錐母線,既然已知體積,那么可先求出圓錐的高,再利用圓錐的性質(zhì)(圓錐的高,底面半徑,母線組成直角三角形)可得母線,,,,.考點:圓錐的體積與面積公式,圓錐的性質(zhì).14、【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域,如圖所示,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【點睛】本題主要考查簡單線性規(guī)劃求解目標(biāo)函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計算能力,屬于基礎(chǔ)題.15、-8【解析】設(shè)等比數(shù)列的公比為,很明顯,結(jié)合等比數(shù)列的通項公式和題意可得方程組:,由可得:,代入①可得,由等比數(shù)列的通項公式可得.【名師點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程.16、【解析】∵,(,),當(dāng)時,,,…,,并項相加,得:,

∴,又∵當(dāng)時,也滿足上式,

∴數(shù)列的通項公式為,∴

,令(),則,∵當(dāng)時,恒成立,∴在上是增函數(shù),

故當(dāng)時,,即當(dāng)時,,對任意的正整數(shù),當(dāng)時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實數(shù)的取值范圍為,故答案為.點睛:本題考查數(shù)列的通項及前項和,涉及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查運算求解能力,注意解題方法的積累,屬于難題通過并項相加可知當(dāng)時,進(jìn)而可得數(shù)列的通項公式,裂項、并項相加可知,通過求導(dǎo)可知是增函數(shù),進(jìn)而問題轉(zhuǎn)化為,由恒成立思想,即可得結(jié)論.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)0.3,直方圖見解析;(2)121;(3).【解析】

(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分?jǐn)?shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,將中點值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計算、分?jǐn)?shù)段的人數(shù),然后按照比例進(jìn)行抽取,設(shè)從樣本中任取2人,至多有1人在分?jǐn)?shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個數(shù)求出題目比值即可.【詳解】(1)分?jǐn)?shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,補全后的直方圖如下:(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由題意,[110,120)分?jǐn)?shù)段的人數(shù)為:60×0.15=9人,[120,130)分?jǐn)?shù)段的人數(shù)為:60×0.3=18人.∵用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,∴需在[110,120)分?jǐn)?shù)段內(nèi)抽取2人,并分別記為m,n;在[120,130)分?jǐn)?shù)段內(nèi)抽取4人并分別記為a,b,c,d;設(shè)“從樣本中任取2人,至多有1人在分?jǐn)?shù)段[120,130)內(nèi)”為事件A,則基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15種.事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9種,∴.18、(1)或;(2)、.【解析】

(1)由先求的值,再求角即可;(2)先由求出,再根據(jù)求出即可.【詳解】(1)由已知,又,所以,即,或;(2)因為,由可得,又因為,所以,即,總之、.【點睛】本題主要考查正弦定理、余弦定理及三角形面積公式的應(yīng)用,屬常規(guī)考題.19、(1)B=π3或2π【解析】

(1)由正弦定理和三角恒等變換的公式,化簡得3sin(A+B)=2sinBsin(2)由(1)和三角形的面積公式,可求得ac=2,再由余弦定理和基本不等式,即可求解b的最小值.【詳解】(1)由題意,知3(b結(jié)合正弦定理得:3(即3sin又在△ABC中,sin(A+B)=sinC>0因為B∈(0,π)所以B=π3或(2)由三角形的面積公式,可得12又由sinB=32因為B是鈍角,所以B=2π由余弦定理得b2當(dāng)且僅當(dāng)a=c時取等號,所以b的最小值為6.【點睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時,要抓住題設(shè)條件和利用某個定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于中檔試題.20、(1)見解析(2)見解析(3)【解析】

(1)在平面找一條直線平行即可.(2)在平面內(nèi)找兩條相交直線垂直即可.(3)三棱錐即可【詳解】(1)連接,因為直棱柱,則為矩形,則為的中點連接,在中,為中位線,則平面(2)連接,底面底面底面①為正邊的中點②由①②及平面(3)因為取的中點,連接,則平面,即為高,【點睛】本題主要考查了直線與平面平行,直線與平面垂直的證明,以及三棱錐的體積公式,證明直線與平面平行往往轉(zhuǎn)化成證明直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論