海南省萬寧市民族中學2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第1頁
海南省萬寧市民族中學2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第2頁
海南省萬寧市民族中學2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第3頁
海南省萬寧市民族中學2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第4頁
海南省萬寧市民族中學2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

海南省萬寧市民族中學2025屆高一下數(shù)學期末教學質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.總體由編號為01,02,…,60的60個個體組成,利用下面的隨機數(shù)表選取5個個體,選取方法是從隨機數(shù)表第1行的第8列和第9列數(shù)字開始由左至右選取兩個數(shù)字,則選出的第5個個體的編號為()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.142.已知向量,,則與夾角的大小為()A. B. C. D.3.如圖,圓O所在的平面,AB是圓O的直徑,C是圓周上一點(與A、B均不重合),則圖中直角三角形的個數(shù)是()A.1 B.2 C.3 D.44.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)5.如圖,測量河對岸的塔高時,選與塔底B在同一水平面內(nèi)的兩個測點C與D.現(xiàn)測得,,,并在點C測得塔頂A的仰角為,則塔高為()A. B. C.60m D.20m6.若實數(shù),滿足不等式組則的最大值為()A. B.2 C.5 D.77.已知是兩條不重合的直線,為兩個不同的平面,則下列說法正確的是()A.若,是異面直線,那么與相交B.若//,,則C.若,則//D.若//,則8.已知函數(shù),則A.f(x)的最小正周期為π B.f(x)為偶函數(shù)C.f(x)的圖象關(guān)于對稱 D.為奇函數(shù)9.若,,則與的夾角為()A. B. C. D.10.一支田徑隊有男運動員560人,女運動員420人,為了解運動員的健康情況,從男運動員中任意抽取16人,從女生中任意抽取12人進行調(diào)查.這種抽樣方法是()A.簡單隨機抽樣法 B.抽簽法C.隨機數(shù)表法 D.分層抽樣法二、填空題:本大題共6小題,每小題5分,共30分。11.若方程表示圓,則實數(shù)的取值范圍是______.12.若是等差數(shù)列,首項,,,則使前項和最大的自然數(shù)是________.13.在中,給出如下命題:①是所在平面內(nèi)一定點,且滿足,則是的垂心;②是所在平面內(nèi)一定點,動點滿足,,則動點一定過的重心;③是內(nèi)一定點,且,則;④若且,則為等邊三角形,其中正確的命題為_____(將所有正確命題的序號都填上)14.不等式的解集是.15.在等差數(shù)列中,已知,,則________.16.已知,,則________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.據(jù)某市供電公司數(shù)據(jù),2019年1月份市新能源汽車充電量約270萬度,同比2018年增長,為了增強新能源汽車的推廣運用,政府加大了充電樁等基礎設施的投入.現(xiàn)為了了解該城市充電樁等基礎設施的使用情況,隨機選取了200個駕駛新能源汽車的司機進行問卷調(diào)查,根據(jù)其滿意度評分值(百分制)按照,,…,分成5組,制成如圖所示的頻率分布直方圖.(1)求圖中的值并估計樣本數(shù)據(jù)的中位數(shù);(2)已知滿意度評分值在內(nèi)的男女司機人數(shù)比為,從中隨機抽取2人進行座談,求2人均為女司機的概率.18.三角比內(nèi)容豐富,公式很多,若仔細觀察、大膽猜想、科學求證,你也能發(fā)現(xiàn)其中的一些奧秘.請你完成以下問題:(1)計算:,,;(2)根據(jù)(1)的計算結(jié)果,請你猜出一個一般的結(jié)論用數(shù)學式子加以表達,并證明你的結(jié)論,寫出推理過程.19.如圖,在三棱柱中,是邊長為4的正三角形,側(cè)面是矩形,分別是線段的中點.(1)求證:平面;(2)若平面平面,,求三棱錐的體積.20.近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.21.已知數(shù)列的前項和為,且,.(1)試寫出數(shù)列的任意前后兩項(即、)構(gòu)成的等式;(2)用數(shù)學歸納法證明:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

通過隨機數(shù)表的相關(guān)運算即可得到答案.【詳解】隨機數(shù)表第1行的第8列和第9列數(shù)字為42,由左至右選取兩個數(shù)字依次為42,36,03,14,22,選出的第5個個體的編號為22,故選C.【點睛】本題主要考查隨機數(shù)法,按照規(guī)則進行即可,難度較小.2、D【解析】

根據(jù)向量,的坐標及向量夾角公式,即可求出,從而根據(jù)向量夾角的范圍即可求出夾角.【詳解】向量,,則;∴;∵0≤<a,b>≤π;∴<a,b>=.故選:D.【點睛】本題考查數(shù)量積表示兩個向量的夾角,已知向量坐標代入夾角公式即可求解,屬于??碱}型,屬于簡單題.3、D【解析】

利用直徑所對的圓周角為直角和線面垂直的判定定理和性質(zhì)定理即可判斷出答案.【詳解】AB是圓O的直徑,則AC⊥BC,由于PA⊥平面ABC,則PA⊥BC,即有BC⊥平面PAC,則有BC⊥PC,則△PBC是直角三角形;由于PA⊥平面ABC,則PA⊥AB,PA⊥AC,則△PAB和△PAC都是直角三角形;再由AC⊥BC,得∠ACB=90°,則△ACB是直角三角形.綜上可知:此三棱錐P?ABC的四個面都是直角三角形.故選D.【點睛】本題考查直線與平面垂直的性質(zhì),考查垂直關(guān)系的推理與證明,屬于基礎題.4、A【解析】

由題意可得,,求解即可.【詳解】,解得或,故解集為(-,0)(1,+),故選A.【點睛】本題考查了分式不等式的解法,考查了計算能力,屬于基礎題.5、D【解析】

由正弦定理確定的長,再求出.【詳解】,由正弦定理得:故選D【點睛】本題是正弦定理的實際應用,關(guān)鍵是利用正弦定理求出,屬于基礎題.6、C【解析】

利用線性規(guī)劃數(shù)形結(jié)合分析解答.【詳解】由約束條件,作出可行域如圖:由得A(3,-2).由,化為,由圖可知,當直線過點時,直線在軸上的截距最小,有最大值為5.故選C.【點睛】本題主要考查利用線性規(guī)劃求最值,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、D【解析】

采用逐一驗證法,結(jié)合線面以及線線之間的位置關(guān)系,可得結(jié)果.【詳解】若,是異面直線,與也可平行,故A錯若//,,也可以在內(nèi),故B錯若也可以在內(nèi),故C錯若//,則,故D對故選:D【點睛】本題主要考查線面以及線線之間的位置關(guān)系,屬基礎題.8、C【解析】對于函數(shù),它的最小正周期為=4π,故A選項錯誤;函數(shù)f(x)不滿足f(–x)=f(x),故f(x)不是偶函數(shù),故B選項錯誤;令x=,可得f(x)=sin0=0,故f(x)的圖象關(guān)于對稱,C正確;由于f(x–)=sin(x–)=–sin(x)=–cos(x)為偶函數(shù),故D選項錯誤,故選C.9、A【解析】

根據(jù)平面向量夾角公式可求得,結(jié)合的范圍可求得結(jié)果.【詳解】設與的夾角為,又故選:【點睛】本題考查平面向量夾角的求解問題,關(guān)鍵是熟練掌握兩向量夾角公式,屬于基礎題.10、D【解析】

若總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣【詳解】總體由男生和女生組成,比例為560:420=4:1,所抽取的比例也是16:12=4:1.故選D.【點睛】本小題主要考查抽樣方法,當總體由差異明顯的幾部分組成時,經(jīng)常采用分層抽樣的方法進行抽樣,屬基本題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

把圓的一般方程化為圓的標準方程,得出表示圓的條件,即可求解,得到答案.【詳解】由題意,方程可化為,方程表示圓,則滿足,解得.【點睛】本題主要考查了圓的一般方程與圓的標準方程的應用,其中熟記圓的一般方程與圓的標準方程的互化是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎.12、【解析】

由已知條件推導出,,由此能求出使前項和成立的最大自然數(shù)的值.【詳解】解:等差數(shù)列,首項,,,,.如若不然,,則,而,得,矛盾,故不可能.使前項和成立的最大自然數(shù)為.故答案為:.【點睛】本題考查等差數(shù)列的前項和取最大值時的值的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的通項公式的合理運用.13、①②④.【解析】

①:運用已知的式子進行合理的變形,可以得到,進而得到,再次運用等式同樣可以得到,,這樣可以證明出是的垂心;②:運用平面向量的減法的運算法則、加法的幾何意義,結(jié)合平面向量共線定理,可以證明本命題是真命題;③:運用平面向量的加法的幾何意義以及平面向量共線定理,結(jié)合面積公式,可證明出本結(jié)論是錯誤的;④:運用平面向量的加法幾何意義和平面向量的數(shù)量積的定義,可以證明出本結(jié)論是正確的.【詳解】①:,同理可得:,,所以本命題是真命題;②:,設的中點為,所以有,因此動點一定過的重心,故本命題是真命題;③:由,可得設的中點為,,,故本命題是假命題;④:由可知角的平分線垂直于底邊,故是等腰三角形,由可知:,所以是等邊三角形,故本命題是真命題,因此正確的命題為①②④.【點睛】本題考查了平面向量的加法的幾何意義和平面向量數(shù)量積的運算,考查了數(shù)形結(jié)合思想.14、【解析】

因為,且拋物線開口方向向上,所以,不等式的解集是.15、-16【解析】

設等差數(shù)列的公差為,利用通項公式求出即可.【詳解】設等差數(shù)列的公差為,得,則.故答案為【點睛】本題考查了等差數(shù)列通項公式的應用,屬于基礎題.16、【解析】

直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因為,,根據(jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),中位數(shù)的估計值為75(2)【解析】

(1)根據(jù)頻率和為1計算,再判斷中位數(shù)落在第三組內(nèi),再計算中位數(shù).(2)該組男司機3人,女司機2人.記男司機為:,,,女司機為:,.排列出所有可能,計算滿足條件的個數(shù),相除得到答案.【詳解】解:(1)根據(jù)頻率和為1得.則.第一組和第二組的頻率和為,則中位數(shù)落在第三組內(nèi).由于第三組的頻率為0.4,所以中位數(shù)的估計值為75.(2)設事件:隨機抽取2人進行座談,2人均為女司機.的人數(shù)為人.∴該組男司機3人,女司機2人.記男司機為:,,,女司機為:,.5人抽取2人進行座談有:,,,,,,,,,共10個基本事件.其中2人均為女司機的基本事件為.∴.∴隨機抽取2人進行座談,2人均為女司機的概率是.【點睛】本題考查了中位數(shù)和概率的計算,意在考查學生的計算能力和應用能力.18、(1),,;(2).【解析】

(1)依據(jù)誘導公式以及兩角和的正弦公式即可計算出;(2)觀察(1)中角度的關(guān)系,合情推理出一般結(jié)論,然后利用兩角和的正弦公式即可證明.【詳解】(1)同理可得,,.(2)由(1)知,可以猜出:.證明如下:.【點睛】本題主要考查學生合情推理論證能力,以及誘導公式和兩角和的正弦公式的應用,意在考查學生的數(shù)學抽象素養(yǎng)和邏輯推理能力.19、(1)見解析(2)【解析】

(1)取中點為,連接,由中位線定理證得,即證得平行四邊形,于是有,這樣就證得線面平行;(2)由等體積法變換后可計算.【詳解】證明:(1)取中點為,連接,是平行四邊形,平面,平面,∴平面解:(2)是線段中點,則【點睛】本題考查線面平行的判定,考查棱錐的體積.線面平行的證明關(guān)鍵是找到線線平行,而棱錐的體積常常用等積變換,轉(zhuǎn)化頂點與底.20、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】

(I)根據(jù)頻率之和為列方程,結(jié)合求出的值.(II)利用各組中點值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).以頻率分布直方圖最高一組的中點作為中位數(shù).(III)先計算出從,中分別抽取人和人,再利用列舉法和古典概型概率計算公式,計算出所求的概率.【詳解】解:(I)依題意得,所以,又,所以.(Ⅱ)平均數(shù)為中位數(shù)為眾數(shù)為(Ш)依題意,知分數(shù)在的市民抽取了2人,記為,分數(shù)在的市民抽取了6人,記為1,2,3,4,5,6,所以從這8人中隨機抽取2人所有的情況為:,共28種,其中滿足條件的為,共13種,設“至少有1人的分數(shù)在”的事件為,則【點睛】本小題主要考查求解頻率分布直方圖上的未知數(shù),考查利用頻率分布直方圖估計平均數(shù)、中位數(shù)和眾數(shù)的方法,考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論