天津市寶坻區(qū)普通高中高三下第一次測試新高考數(shù)學試題及答案解析_第1頁
天津市寶坻區(qū)普通高中高三下第一次測試新高考數(shù)學試題及答案解析_第2頁
天津市寶坻區(qū)普通高中高三下第一次測試新高考數(shù)學試題及答案解析_第3頁
天津市寶坻區(qū)普通高中高三下第一次測試新高考數(shù)學試題及答案解析_第4頁
天津市寶坻區(qū)普通高中高三下第一次測試新高考數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

天津市寶坻區(qū)普通高中高三下第一次測試新高考數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.2.已知函數(shù),不等式對恒成立,則的取值范圍為()A. B. C. D.3.已知(為虛數(shù)單位,為的共軛復數(shù)),則復數(shù)在復平面內(nèi)對應的點在().A.第一象限 B.第二象限 C.第三象限 D.第四象限4.設全集,集合,,則()A. B. C. D.5.某人造地球衛(wèi)星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛(wèi)星近地點離地面的距離為,則該衛(wèi)星遠地點離地面的距離為()A. B.C. D.6.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,7.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.8.《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲9.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種10.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.11.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.112.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.14.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.15.若滿足約束條件,則的最小值是_________,最大值是_________.16.函數(shù)的最大值與最小正周期相同,則在上的單調(diào)遞增區(qū)間為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.18.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.19.(12分)設,函數(shù).(1)當時,求在內(nèi)的極值;(2)設函數(shù),當有兩個極值點時,總有,求實數(shù)的值.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標方程;(Ⅱ)設點,直線與曲線相交于,,求的值.21.(12分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.22.(10分)為了加強環(huán)保知識的宣傳,某學校組織了垃圾分類知識竟賽活動.活動設置了四個箱子,分別寫有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫有一種垃圾的名稱.每位參賽選手從所有卡片中隨機抽取張,按照自己的判斷將每張卡片放入對應的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯誤得分.比如將寫有“廢電池”的卡片放入寫有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機選取名選手,以表示這名選手中得分不超過分的人數(shù),求的分布列和數(shù)學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.2、C【解析】

確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設,,故單調(diào)遞減,故,當,即時取最大值,所以.故選:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關鍵.3、D【解析】

設,由,得,利用復數(shù)相等建立方程組即可.【詳解】設,則,所以,解得,故,復數(shù)在復平面內(nèi)對應的點為,在第四象限.故選:D.【點睛】本題考查復數(shù)的幾何意義,涉及到共軛復數(shù)的定義、復數(shù)的模等知識,考查學生的基本計算能力,是一道容易題.4、D【解析】

求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.5、A【解析】

由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛(wèi)星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛(wèi)星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.6、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.7、C【解析】

建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數(shù)方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.8、D【解析】

根據(jù)雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎題.9、B【解析】

根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據(jù)排列組合進行計算即可.【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.10、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.11、C【解析】

根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.12、C【解析】

設過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關系式結(jié)合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數(shù)定義可知,因為,則,所以由同角三角函數(shù)關系式可得,所以故答案為:.【點睛】本題考查了三角函數(shù)定義,同角三角函數(shù)關系式的應用,余弦差角公式的應用,屬于中檔題.14、【解析】

設,設出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設,直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.15、06【解析】

作不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求出結(jié)果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當直線過點時,軸上截距最大,即z取最小值,.當直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.16、【解析】

利用三角函數(shù)的輔助角公式進行化簡,求出函數(shù)的解析式,結(jié)合三角函數(shù)的單調(diào)性進行求解即可.【詳解】∵,則函數(shù)的最大值為2,周期,的最大值與最小正周期相同,,得,則,當時,,則當時,得,即函數(shù)在,上的單調(diào)遞增區(qū)間為,故答案為:.【點睛】本題考查三角函數(shù)的性質(zhì)、單調(diào)區(qū)間,利用輔助角公式求出函數(shù)的解析式是解決本題的關鍵,同時要注意單調(diào)區(qū)間為定義域的一個子區(qū)間.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因為,所以.在中,由正弦定理得,所以,即.在中,由余弦定理得,又因為,所以.(2)由(1)得,在中,,所以.因為,所以,所以當,即時,有最大值1,所以的最大值為.【點睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標運算,是一道容易題.18、(1)線的普通方程為,曲線的直角坐標方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進而利用即可化為極坐標方程,同理可得曲線C2的直角坐標方程;

(2)由過的圓心,得得,設,,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標方程為曲線的直角坐標方程為(2)在直角坐標系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點,在極坐標下,設,分別代入中,有和∴,則,即19、(1)極大值是,無極小值;(2)【解析】

(1)當時,可求得,令,利用導數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時,不等式恒成立,即.當時,恒成立,即,令,易證是上的減函數(shù).因此,當時,,故.當時,恒成立,即,因此,當時,所以.綜上所述,.【點睛】本題考查利用導數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.20、(Ⅰ),;(Ⅱ).【解析】

(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時乘以,結(jié)合,可得曲線的直角坐標方程;(Ⅱ)把代入,化為關于的一元二次方程,利用根與系數(shù)的關系及參數(shù)的幾何意義求解.【詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標方程為;(Ⅱ)把代入,得.設,兩點對應的參數(shù)分別為,則,.不妨設,,∴.【點睛】本題考查簡單曲線的極坐標方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關鍵,是中檔題.21、(1)見解析(2)【解析】

(1)設的中點為,連接.由展開圖可知,,.為的中點,則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論