江蘇省泰興市三中2025屆數(shù)學高一下期末綜合測試試題含解析_第1頁
江蘇省泰興市三中2025屆數(shù)學高一下期末綜合測試試題含解析_第2頁
江蘇省泰興市三中2025屆數(shù)學高一下期末綜合測試試題含解析_第3頁
江蘇省泰興市三中2025屆數(shù)學高一下期末綜合測試試題含解析_第4頁
江蘇省泰興市三中2025屆數(shù)學高一下期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰興市三中2025屆數(shù)學高一下期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過點A(3,3)且垂直于直線的直線方程為A. B. C. D.2.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若cosB=,=2,且S△ABC=,則b的值為()A.4 B.3 C.2 D.13.以橢圓的兩個焦點為直徑的端點的圓與橢圓交于四個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為()A. B. C. D.4.已知角的終邊上一點,且,則()A. B. C. D.5.若,且,則下列不等式中正確的是()A. B. C. D.6.已知數(shù)列{an}滿足a1=2A.2 B.-3 C.-127.在一個錐體中,作平行于底面的截面,若這個截面面積與底面面積之比為1∶3,則錐體被截面所分成的兩部分的體積之比為()A.1∶ B.1∶9 C.1∶ D.1∶8.若直線與函數(shù)的圖象相鄰的兩個交點之間的距離為1,則函數(shù)圖象的對稱中心為()A. B. C. D.9.直線的斜率是()A. B. C. D.10.過點P(﹣2,m)和Q(m,4)的直線斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或4二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標系中,圓的方程為.若直線上存在一點,使過所作的圓的兩條切線相互垂直,則實數(shù)的取值范圍是______.12.設數(shù)列的前n項和為,關于數(shù)列,有下列三個命題:(1)若既是等差數(shù)列又是等比數(shù)列,則;(2)若,則是等差數(shù)列:(3)若,則是等比數(shù)列這些命題中,真命題的序號是__________________________.13.在中,已知,則____________.14.方程的解集是__________.15.已知四面體的四個頂點均在球的表面上,為球的直徑,,四面體的體積最大值為____16.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在四棱錐P-ABCD中,四邊形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,點E為線段PA的中點.(1)求證:PC∥平面BDE;(2)求三棱錐E-BCD的體積.18.已知函數(shù),.(1)把表示為的形式,并寫出函數(shù)的最小正周期、值域;(2)求函數(shù)的單調(diào)遞增區(qū)間:(3)定義:對于任意實數(shù)、,設,(常數(shù)),若對于任意,總存在,使得恒成立,求實數(shù)的取值范圍.19.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)若方程在有兩個不同的實根,求的取值范圍.20.某地區(qū)有小學21所,中學14所,現(xiàn)采用分層抽樣的方法從這些學校中抽取5所學校,對學生進行視力檢查.(1)求應從小學、中學中分別抽取的學校數(shù)目;(2)若從抽取的5所學校中抽取2所學校作進一步數(shù)據(jù)分析:①列出所有可能抽取的結果;②求抽取的2所學校至少有一所中學的概率.21.已知向量,且(1)當時,求及的值;(2)若函數(shù)的最小值是,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】過點A(3,3)且垂直于直線的直線斜率為,代入過的點得到.故答案為D.2、C【解析】試題分析:根據(jù)正弦定理可得,.在中,,.,,.,.故C正確.考點:1正弦定理;2余弦定理.3、D【解析】

四個交點中的任何一個到焦點的距離和都是,然后分析正六邊形中的長度和焦距的關系,從而建立等式求解.【詳解】設橢圓的焦點是,圓與橢圓的四個交點是,設,,,,.故選D.【點睛】本題考查了橢圓的定義和橢圓的性質(zhì),屬于基礎題型4、B【解析】

由角的終邊上一點得,根據(jù)條件解出即可【詳解】由角的終邊上一點得所以解得故選:B【點睛】本題考查的是三角函數(shù)的定義,較簡單.5、D【解析】

利用不等式的性質(zhì)依次對選項進行判斷?!驹斀狻繉τ贏,當,且異號時,,故A不正確;對于B,當,且都為負數(shù)時,,故B不正確;對于C,取,則,故不正確;對于D,由于,,則,所以,即,故D正確;故答案選D【點睛】本題主要考查不等式的基本性質(zhì),在解決此類選擇題時,可以用特殊值法,依次對選項進行排除。6、D【解析】

先通過列舉找到數(shù)列的周期,再利用數(shù)列的周期求值.【詳解】由題得a2所以數(shù)列的周期為4,所以a2020故選:D【點睛】本題主要考查遞推數(shù)列和數(shù)列的周期,意在考查學生對這些知識的理解掌握水平,屬于基礎題.7、D【解析】解:因為在一個錐體中,作平行于底面的截面,若這個截面面積與底面面積之比為1∶3,那么分為的兩個錐體的體積比為1:,因此錐體被截面所分成的兩部分的體積之比為.1∶8、A【解析】

先計算周期得到,得到函數(shù)表達式,再根據(jù)中心對稱公式得到答案.【詳解】直線與函數(shù)的圖象相鄰的兩個交點之間的距離為1則的對稱中心橫坐標為:對稱中心為故答案選A【點睛】本題考查了函數(shù)的周期,對稱中心,意在考查學生綜合應用能力.9、A【解析】

一般式直線方程的斜率為.【詳解】直線的斜率為.故選A【點睛】此題考察一般直線方程的斜率,屬于較易基礎題目10、C【解析】試題分析:利用直線的斜率公式求解.解:∵過點P(﹣2,m)和Q(m,4)的直線斜率等于1,∴k==1,解得m=1.故選C.考點:直線的斜率.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:記兩個切點為,則由于,因此四邊形是正方形,,圓標準方程為,,,于是圓心直線的距離不大于,,解得.考點:直線和圓的位置關系.12、(1)、(2)、(3)【解析】

利用等差數(shù)列和等比數(shù)列的定義,以及等差數(shù)列和等比數(shù)列的前項和形式,逐一判斷即可.【詳解】既是等差數(shù)列又是等比數(shù)列的數(shù)列是非零常數(shù)列,故(1)正確.等差數(shù)列的前項和是二次函數(shù)形式,且不含常數(shù),故(2)正確.等比數(shù)列的前項和是常數(shù)加上常數(shù)乘以的形式,故(3)正確.故答案為:(1),(2),(3)【點睛】本題主要考查等差數(shù)列和等比數(shù)列的定義,同時考查了等差數(shù)列和等比數(shù)列的前項和,屬于簡單題.13、84【解析】

根據(jù)余弦定理以及同角公式求得,再根據(jù)面積公式可得答案.【詳解】由余弦定理可得,又,所以,所以.故答案為:84【點睛】本題考查了余弦定理,考查了同角公式,考查了三角形的面積公式,屬于基礎題.14、【解析】

令,,將原方程化為關于的一元二次方程,解出得到,進而得出方程的解集.【詳解】令,,故原方程可化為,解得或,故而或,即方程的解集是,故答案為.【點睛】本題主要考查了指數(shù)方程的解法,轉(zhuǎn)化為一元二次方程是解題的關鍵,屬于基礎題.15、2【解析】

為球的直徑,可知與均為直角三角形,求出點到直線的距離為,可知點在球上的運動軌跡為小圓.【詳解】如圖所示,四面體內(nèi)接于球,為球的直徑,,,,過作于,,點在以為圓心,為半徑的小圓上運動,當面面時,四面體的體積達到最大,.【點睛】立體幾何中求最值問題,核心通過直觀想象,找到幾何體是如何變化的?本題求解的突破口在于找到點的運動軌跡,考查學生的空間想象能力和邏輯思維能力.16、5【解析】

根據(jù)平均數(shù)的定義計算.【詳解】由題意,故答案為:5.【點睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關鍵.實際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)16【解析】

(1)證明EO∥PC得到PC∥平面BDE.(2)先證明EF就是三棱錐E-BCD的高,再利用體積公式得到三棱錐E-BCD的體積.【詳解】(1)證明:連結AC交BD于O,連結EO.∵四邊形ABCD是正方形,在ΔPAC中,O為AC中點,又∵E為PA中點∴EO∥PC.又∵PC?平面BDE,EO?平面BDE.∴PC∥平面BDE.(2)解:取AD中點F,連結EF.則EF∥PD且EF=1∵PD⊥平面ABCD,∴EF⊥平面ABCD,∴EF就是三棱錐E-BCD的高.在正方形ABCD中,SΔBCD∴V三棱錐【點睛】本題考查了線面平行,三棱錐的體積,意在考查學生的空間想象能力和計算能力.18、(1);(2)(3)【解析】

(1)結合二倍角正弦公式和輔助角公式即可化簡;(2)結合(1)中所求表達式,正弦型函數(shù)單調(diào)增區(qū)間的通式即可求解;(3)根據(jù)題意可得,,求出的值域,列出關于的不等式組,即可求解【詳解】(1),,值域為;(2)令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為,;(3)若對于任意,總存在,使得恒成立,則,,當,即時,,當,即時,,故,所以,解得,所以實數(shù)的取值范圍是【點睛】本題考查三角函數(shù)的化簡和三角函數(shù)的性質(zhì)應用,函數(shù)恒成立問題的轉(zhuǎn)化,屬于中檔題19、(1)最小正周期,;(2).【解析】

(1)利用兩角差的余弦公式、倍角公式、輔助角公式得,求得周期;(2)利用換元法令,將問題轉(zhuǎn)化成方程在有兩個不同的實根,再利用圖象得的取值范圍.【詳解】(1),所以的最小正周期,由得:,所以的單調(diào)遞增區(qū)間是.(2)令,因為,所以,即方程在有兩個不同的實根,由函數(shù)的圖象可知,當時滿足題意,所以的取值范圍為.【點睛】第(1)問考查三角恒等變換的綜合運用;第二問考查換元法求參數(shù)的取值范圍,注意在換元的過程中參數(shù)不能出錯,否則轉(zhuǎn)化后的問題與原問題就不等價.20、(1)3所、2所;(2)①共10種;②【解析】

(1)根據(jù)分層抽樣的方法,得到分層抽樣的比例,即可求解樣本中小學與中學抽取的學校數(shù)目;(2)①3所小學分別記為;2所中學分別記為,利用列舉法,即可求得抽取的2所學校的所有結果;②利用古典概型的概率計算公式,即可求得相應的概率.【詳解】(1)學??倲?shù)為35所,所以分層抽樣的比例為,計算各類學校應抽取的數(shù)目為:,故從小學、中學中分別抽取的學校數(shù)目為3所、2所.(2)①3所小學分別記為;2所中學分別記為應抽取的2所學校的所有結果為:共10種.②設“抽取的2所學校至少有一所中學”作為事件.其結果共有7種,所以概率為.【點睛】本題主要考查了分層抽樣的應用,以及古典概型及其概率的計算,其中解答中認真審題,合理利用列舉法求得基本事件的總數(shù)是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.21、(1),(2).【解析】

(1)以向量為載體求解向量數(shù)量積、模長,我們只需要把向量坐標表示出來,最后用公式就能輕松完成;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論