2025屆北京市中央美術(shù)學院附屬實驗學校高一數(shù)學第二學期期末復習檢測試題含解析_第1頁
2025屆北京市中央美術(shù)學院附屬實驗學校高一數(shù)學第二學期期末復習檢測試題含解析_第2頁
2025屆北京市中央美術(shù)學院附屬實驗學校高一數(shù)學第二學期期末復習檢測試題含解析_第3頁
2025屆北京市中央美術(shù)學院附屬實驗學校高一數(shù)學第二學期期末復習檢測試題含解析_第4頁
2025屆北京市中央美術(shù)學院附屬實驗學校高一數(shù)學第二學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆北京市中央美術(shù)學院附屬實驗學校高一數(shù)學第二學期期末復習檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對數(shù)列,若區(qū)間滿足下列條件:①;②,則稱為區(qū)間套.下列選項中,可以構(gòu)成區(qū)間套的數(shù)列是()A.;B.C.D.2.已知四面體中,,分別是,的中點,若,,與所成角的度數(shù)為30°,則與所成角的度數(shù)為()A.90° B.45° C.60° D.30°3.七巧板是我國古代勞動人民發(fā)明的一種智力玩具,由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自黑色部分的概率為()A. B. C. D.4.把函數(shù)圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),再把所得曲線向右平移個單位長度,最后所得曲線的一條對稱軸是()A. B. C. D.5.盒中裝有除顏色以外,形狀大小完全相同的3個紅球、2個白球、1個黑球,從中任取2個球,則互斥而不對立的兩個事件是()A.至少有一個白球;至少有一個紅球 B.至少有一個白球;紅、黑球各一個C.恰有一個白球:一個白球一個黑球 D.至少有一個白球;都是白球6.經(jīng)過平面外一點和平面內(nèi)一點與平面垂直的平面有()A.1個 B.2個 C.無數(shù)個 D.1個或無數(shù)個7.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號為()A.①②③ B.①② C.①③ D.②③8.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達式是()A. B.C. D.9.等差數(shù)列中,,則數(shù)列前9項的和等于()A.66 B.99 C.144 D.29710.若,,,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)f(x)=sin22x的最小正周期是__________.12.若點在冪函數(shù)的圖像上,則函數(shù)的反函數(shù)=________.13.函數(shù)在區(qū)間上的最大值為,則的值是_____________.14.已知向量a=1,2,b=2,-2,c=15.在邊長為2的正三角形ABC內(nèi)任取一點P,則使點P到三個頂點的距離至少有一個小于1的概率是________.16.若a、b、c正數(shù)依次成等差數(shù)列,則的最小值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知:的頂點,,.(1)求AB邊上的中線CD所在直線的方程;(2)求的面積.18.已知數(shù)列為遞增的等差數(shù)列,,且成等比數(shù)列.數(shù)列的前項和為,且滿足.(1)求,的通項公式;(2)令,求的前項和.19.已知圓(1)求圓關(guān)于直線對稱的圓的標準方程;(2)過點的直線被圓截得的弦長為8,求直線的方程;(3)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.20.某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;(2)試估計該公司在若干地區(qū)各投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:廣告投入(單位:萬元)12345銷售收益(單位:萬元)2337由表中的數(shù)據(jù)顯示,與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.(參考公式:)21.在中,三個內(nèi)角所對的邊分別為,滿足.(1)求角的大??;(2)若,求,的值.(其中)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由題意,得為遞增數(shù)列,為遞減數(shù)列,且當時,;而與與均為遞減數(shù)列,所以排除A,B,D,故選C.考點:新定義題目.2、A【解析】

取的中點,利用三角形中位線定理,可以得到,與所成角為,運用三角形中位線定理和正弦定理,可以求出的大小,也就能求出與所成角的度數(shù).【詳解】取的中點連接,如下圖所示:因為,分別是,的中點,所以有,因為與所成角的度數(shù)為30°,所以,與所成角的大小等于的度數(shù).在中,,故本題選A.【點睛】本題考查了異面直線所成角的求法,考查了正弦定理,取中點利用三角形中位線定理是解題的關(guān)鍵.3、B【解析】

設(shè)正方形的邊長為,計算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設(shè)正方形的邊長為,則陰影部分由三個小等腰直角三角形構(gòu)成,則正方形的對角線長為,則等腰直角三角形的邊長為,對應(yīng)每個小等腰三角形的面積,則陰影部分的面積之和為,正方形的面積為,若在此正方形中任取一點,則此點取自黑色部分的概率為,故選:B.【點睛】本題考查面積型幾何概型概率公式計算事件的概率,解題的關(guān)鍵在于計算出所求事件對應(yīng)區(qū)域的面積和總區(qū)域的面積,考查計算能力,屬于中等題.4、A【解析】

先求出圖像變換最后得到的解析式,再求函數(shù)圖像的對稱軸方程.【詳解】由題得圖像變換最后得到的解析式為,令,令k=-1,所以.故選A【點睛】本題主要考查三角函數(shù)圖像變換和三角函數(shù)圖像對稱軸的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、B【解析】

根據(jù)對立事件和互斥事件的定義,對每個選項進行逐一分析即可.【詳解】從6個小球中任取2個小球,共有15個基本事件,因為存在事件:取出的兩個球為1個白球和1個紅球,故至少有一個白球;至少有一個紅球,這兩個事件不互斥,故A錯誤;因為存在事件:取出的兩個球為1個白球和1個黑球,故恰有一個白球:一個白球一個黑球,這兩個事件不互斥,故C錯誤;因為存在事件:取出的兩個球都是白球,故至少有一個白球;都是白球,這兩個事件不互斥,故D錯誤;因為至少有一個白球,包括:1個白球和1個紅球,1個白球和1個黑球,2個白球這3個基本事件;紅、黑球各一個只包括1個紅球1個白球這1個基本事件,故兩個事件互斥,因還有其它基本事件未包括,故不對立.故B正確.故選:B.【點睛】本題考查互斥事件和對立事件的辨析,屬基礎(chǔ)題.6、D【解析】

討論平面外一點和平面內(nèi)一點連線,與平面垂直和不垂直兩種情況.【詳解】(1)設(shè)平面為平面,點為平面外一點,點為平面內(nèi)一點,此時,直線垂直底面,過直線的平面有無數(shù)多個與底面垂直;(2)設(shè)平面為平面,點為平面外一點,點為平面內(nèi)一點,此時,直線與底面不垂直,過直線的平面,只有平面垂直底面.綜上,過平面外一點和平面內(nèi)一點與平面垂直的平面有1個或無數(shù)個,故選D.【點睛】借助長方體研究空間中線、面位置關(guān)系問題,能使問題直觀化,降低問題的抽象性.7、D【解析】

由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【點睛】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.8、D【解析】

根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點的坐標求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點的坐標代入函數(shù),得,即,因為,所以,所以函數(shù)的表達式為.故選D.【點睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.9、B【解析】

根據(jù)等差數(shù)列性質(zhì),結(jié)合條件可得,進而求得.再根據(jù)等差數(shù)列前n項和公式表示出,即可得解.【詳解】等差數(shù)列中,,則,解得,因而,由等差數(shù)列前n項和公式可得,故選:B.【點睛】本題考查了等差數(shù)列性質(zhì)的應(yīng)用,等差數(shù)列前n項和公式的用法,屬于基礎(chǔ)題.10、B【解析】

根據(jù)題意,得出,利用基本不等式,即可求解,得到答案.【詳解】由題意,因為,則當且僅當且即時取得最小值.故選B.【點睛】本題主要考查了利用基本不等式求最小值問題,其中解答中合理化簡,熟練應(yīng)用基本不等式求解是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

將所給的函數(shù)利用降冪公式進行恒等變形,然后求解其最小正周期即可.【詳解】函數(shù),周期為【點睛】本題主要考查二倍角的三角函數(shù)公式?三角函數(shù)的最小正周期公式,屬于基礎(chǔ)題.12、【解析】

根據(jù)函數(shù)經(jīng)過點求出冪函數(shù)的解析式,利用反函數(shù)的求法,即可求解.【詳解】因為點在冪函數(shù)的圖象上,所以,解得,所以冪函數(shù)的解析式為,則,所以原函數(shù)的反函數(shù)為.故答案為:【點睛】本題主要考查了冪函數(shù)的解析式的求法,以及反函數(shù)的求法,其中熟記反函數(shù)的求法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解析】

利用同角三角函數(shù)平方關(guān)系,易將函數(shù)化為二次型的函數(shù),結(jié)合余弦函數(shù)的性質(zhì),及函數(shù)在上的最大值為1,易求出的值.【詳解】函數(shù)又函數(shù)在上的最大值為1,≤0,又,且在上單調(diào)遞增,所以即.故答案為:【點睛】本題考查的知識點是三角函數(shù)的最值,其中利用同角三角函數(shù)平方關(guān)系,將函數(shù)化為二次型的函數(shù),是解答本題的關(guān)鍵,屬于中檔題.14、1【解析】

由兩向量共線的坐標關(guān)系計算即可.【詳解】由題可得2∵c//∴4λ-2=0故答案為1【點睛】本題主要考查向量的坐標運算,以及兩向量共線的坐標關(guān)系,屬于基礎(chǔ)題.15、【解析】以A,B,C為圓心,以1為半徑作圓,與△ABC交出三個扇形,當P落在其內(nèi)時符合要求,∴P==.16、1【解析】

由正數(shù)a、b、c依次成等差數(shù)列,則,則,再結(jié)合基本不等式求最值即可.【詳解】解:由正數(shù)a、b、c依次成等差數(shù)列,則,則,當且僅當,即時取等號,故答案為:1.【點睛】本題考查了等差中項的運算,重點考查了基本不等式的應(yīng)用,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)11.【解析】

(1)直接利用已知條件求出AB邊上的中點,即可求直線的方程.(2)利用所求出的直線方程利用分割法求出三角形的面積,或者求出及直線AB的方程,可得點C到直線AB的距離,求出三角形的面積.【詳解】(1)∵線段AB的中點D的坐標為,所以,由兩點式方程可得,AB邊上的中線CD所在直線的方程為,即.(2)法1:因為,點A到直線CD的距離是,所以的面積是.法2:因為,由兩點式得直線AB的方程為:,點C到直線AB的距離是,所以的面積是.【點睛】本題考查直線方程求法與點到直線距離公式應(yīng)用,屬于基礎(chǔ)題.18、(1),(2)【解析】

(1)先根據(jù)成等比數(shù)列,可求出公差,即得的通項公式;根據(jù)可得的通項公式;(2)由(1)可得的通項公式,用錯位相減法計算它的前n項和,即得?!驹斀狻浚?)由題得,,設(shè)數(shù)列的公差為,則有,解得,那么等差數(shù)列的通項公式為;數(shù)列的前項和為,且滿足,當時,,可得,當時,可得,整理得,數(shù)列是等比數(shù)列,通項公式為.(2)由題得,,前n項和,,兩式相減可得,整理化簡得.【點睛】本題考查等比數(shù)列的性質(zhì),以及用錯位相減法求數(shù)列的前n項和,對計算能力有一定要求。19、(1);(2)或;(3)【解析】

(1)設(shè),根據(jù)圓心與關(guān)于直線對稱,列出方程組,求得的值,即可求解;(2)由圓的弦長公式,求得,根據(jù)斜率分類討論,求得直線的斜率,即可求解;(3)由直線,得直線過定點,根據(jù)時,弦長最短,即可求解.【詳解】(1)由題意,圓的圓心,半徑為,設(shè),因為圓心與關(guān)于直線對稱,所以,解得,則,半徑,所以圓標準方程為:(2)設(shè)點到直線距離為,圓的弦長公式,得,解得,①當斜率不存在時,直線方程為,滿足題意②當斜率存在時,設(shè)直線方程為,則,解得,所以直線的方程為,綜上,直線方程為或(3)由直線,可化為,可得直線過定點,當時,弦長最短,又由,可得,此時最短弦長為.【點睛】本題主要考查了圓的對稱圓的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟記直線與圓的弦長公式,合理、準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1)2;(2)5;(3)空白欄中填5,【解析】

(1)根據(jù)頻率等于小長方形的面積以及頻率和為,得到關(guān)于的等式,求解出即可;(2)根據(jù)各組數(shù)據(jù)的組中值與頻率的乘積之和得到對應(yīng)的銷售收益的平均值;(3)先填寫空白欄數(shù)據(jù),然后根據(jù)所給數(shù)據(jù)計算出,即可求解出回歸直線方程.【詳解】(1)設(shè)各小長方形的寬度為.由頻率分布直方圖中各小長方形的面積總和為1,可知,解得.故圖中各小長方形的寬度為2.(2)由(1)知各小組依次是,其中點分別為對應(yīng)的頻率分別為故可估計平均值為.(3)由(2)可知空白欄中填5.由題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論