版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省實驗中學順德學校2025屆高一數(shù)學第二學期期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知x,y∈R,且x>y>0,則()A. B.C. D.lnx+lny>02.若向量,則A. B. C. D.3.將函數(shù)圖像上的每一個點的橫坐標縮短為原來的一半,縱坐標不變,再將所得圖像向左平移個單位得到數(shù)學函數(shù)的圖像,在圖像的所有對稱軸中,離原點最近的對稱軸為()A. B. C. D.4.若,,則與的夾角為()A. B. C. D.5.如圖,在正方體ABCD﹣A1B1C1D1中,給出以下四個結論:①D1C∥平面A1ABB1②A1D1與平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正確的結論個數(shù)是()A.1 B.2 C.3 D.46.如圖,在正方體中,,分別是,中點,則異面直線與所成的角是()A. B. C. D.7.在中,,,,則的面積為A. B. C. D.8.某實驗單次成功的概率為0.8,記事件A為“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”,現(xiàn)采用隨機模擬的方法估計事件4的概率:先由計算機給出0~9十個整數(shù)值的隨機數(shù),指定0,1表示單次實驗失敗,2,3,4,5,6,7,8,9表示單次實驗成功,以3個隨機數(shù)為組,代表3次實驗的結果經隨機模擬產生了20組隨機數(shù),如下表:752029714985034437863694141469037623804601366959742761428261根據(jù)以上方法及數(shù)據(jù),估計事件A的概率為()A.0.384 B.0.65 C.0.9 D.0.9049.為了治療某種疾病,研制了一種新藥,為確定該藥的療效,生物實驗室有只小動物,其中有3只注射過該新藥,若從這只小動物中隨機取出只檢測,則恰有只注射過該新藥的概率為()A. B. C. D.10.已知函數(shù),在中,內角的對邊分別是,內角滿足,若,則的面積的最大值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,若,則____;12.函數(shù)的零點個數(shù)為__________.13.中,,則A的取值范圍為______.14.已知直線l過點P(-2,5),且斜率為-,則直線l的方程為________.15.四名學生按任意次序站成一排,則和都在邊上的概率是___________.16.已知向量,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為,已知(1)求;(2)若為銳角三角形,且邊,求面積的取值范圍.18.已知圓經過點,且圓心在直線:上.(1)求圓的方程;(2)過點的直線與圓交于兩點,問在直線上是否存在定點,使得恒成立?若存在,請求出點的坐標;若不存在,請說明理由.19.已知數(shù)列中,.(1)求證:是等比數(shù)列,求數(shù)列的通項公式;(2)已知:數(shù)列,滿足①求數(shù)列的前項和;②記集合若集合中含有個元素,求實數(shù)的取值范圍.20.如圖,在平面直角坐標系中,點,,銳角的終邊與單位圓O交于點P.(Ⅰ)當時,求的值;(Ⅱ)在軸上是否存在定點M,使得恒成立?若存在,求出點M坐標;若不存在,說明理由.21.已知向量的夾角為60°,且.(1)求與的值;(2)求與的夾角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
結合選項逐個分析,可選出答案.【詳解】結合x,y∈R,且x>y>0,對選項逐個分析:對于選項A,,,故A正確;對于選項B,取,,則,故B不正確;對于選項C,,故C錯誤;對于選項D,,當時,,故D不正確.故選A.【點睛】本題考查了不等式的性質,屬于基礎題.2、B【解析】
根據(jù)向量的坐標運算法則,可直接得出結果.【詳解】因為,所以.故選B【點睛】本題主要考查向量的坐標運算,熟記運算法則即可,屬于基礎題型.3、A【解析】分析:根據(jù)平移變換可得,根據(jù)放縮變換可得函數(shù)的解析式,結合對稱軸方程求解即可.詳解:將函數(shù)的圖象上的每個點的橫坐標縮短為原來的一半,縱坐標不變,得到,再將所得圖象向左平移個單位得到函數(shù)的圖象,即,由,得,當時,離原點最近的對稱軸方程為,故選A.點睛:本題主要考查三角函數(shù)的圖象與性質,屬于中檔題.由函數(shù)可求得函數(shù)的周期為;由可得對稱軸方程;由可得對稱中心橫坐標.4、A【解析】
根據(jù)平面向量夾角公式可求得,結合的范圍可求得結果.【詳解】設與的夾角為,又故選:【點睛】本題考查平面向量夾角的求解問題,關鍵是熟練掌握兩向量夾角公式,屬于基礎題.5、B【解析】
在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到與平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【詳解】由正方體中,可得:在①中,因為,平面,平面,∴平面,故①正確;在②中,∵,平面,平面,∴平面,故②錯誤;在③中,∵,∴與平面相交但不垂直,故③錯誤;在④中,∵平面,平面,∴平面平面,故④正確.故選:B.【點睛】本題主要考查了命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.6、D【解析】
如圖,平移直線到,則直線與直線所成角,由于點都是中點,所以,則,而,所以,即,應選答案D.7、C【解析】
利用三角形中的正弦定理求出角B,利用三角形內角和求出角C,再利用三角形的面積公式求出三角形的面積,求得結果.【詳解】因為中,,,,由正弦定理得:,所以,所以,所以,所以,故選C.【點睛】該題所考查的是有關三角形面積的求解問題,在解題的過程中,需要注意根據(jù)題中所給的條件,應用正弦定理求得,從而求得,之后應用三角形面積公式求得結果.8、C【解析】
由隨機模擬實驗結合圖表計算即可得解.【詳解】由隨機模擬實驗可得:“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中最多成功1次”共141,601兩組隨機數(shù),則“在實驗條件相同的情況下,重復3次實驗,各次實驗互不影響,則3次實驗中至少成功2次”共組隨機數(shù),即事件的概率為,故選.【點睛】本題考查了隨機模擬實驗及識圖能力,屬于中檔題.9、B【解析】
將只注射過新藥和未注射過新藥的小動物分別編號,列出所有的基本事件,并確定事件“恰有只注射過該新藥”所包含的基本事件的數(shù)目,然后利用古典概型的概率計算公式可該事件的概率.【詳解】將只注射過新藥的小動物編號為、、,只未注射新藥的小動物編號為、、,記事件恰有只注射過該新藥,所有的基本事件有:、、、、、、、、、、、、、、,共個,其中事件所包含的基本事件個數(shù)為個,由古典概型的概率公式得,故選B.【點睛】本題考查古典概型的概率公式,列舉基本事件是解題的關鍵,一般在列舉基本事件有枚舉法和數(shù)狀圖法,列舉時應注意不重不漏,考查計算能力,屬于中等題.10、B【解析】
通過將利用合一公式變?yōu)?,代入A求得A角,從而利用余弦定理得到b,c,的關系,從而利用均值不等式即可得到面積最大值.【詳解】,為三角形內角,則,,當且僅當時取等號【點睛】本題主要考查三角函數(shù)恒等變換,余弦定理,面積公式及均值不等式,綜合性較強,意在考查學生的轉化能力,對學生的基礎知識掌握要求較高.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】試題分析:因為,所以.由正弦定理,知,所以==.考點:1、同角三角函數(shù)間的基本關系;2、正弦定理.12、3【解析】
運用三角函數(shù)的誘導公式先將函數(shù)化簡,再在同一直角坐標系中做出兩支函數(shù)的圖像,觀察其交點的個數(shù)即得解.【詳解】由三角函數(shù)的誘導公式得,所以令,求零點的個數(shù)轉化求方程根的個數(shù),因此在同一直角坐標系分別做出和的圖象,觀察兩支圖象的交點的個數(shù)為個,注意在做的圖像時當時,,故得解.【點睛】本題考查三角函數(shù)的有界性和余弦函數(shù)與對數(shù)函數(shù)的交點情況,屬于中檔題.13、【解析】
由正弦定理將sin2A≤sin2B+sin2C-sinBsinC變?yōu)?,然后用余弦定理推論可求,進而根據(jù)余弦函數(shù)的圖像性質可求得角A的取值范圍.【詳解】因為sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因為,所以.【點睛】在三角形中,已知邊和角或邊、角關系,求角或邊時,注意正弦、余弦定理的運用.條件只有角的正弦時,可用正弦定理的推論,將角化為邊.14、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.15、【解析】
寫出四名學生站成一排的所有可能情況,得出和都在邊上的情況即可求得概率.【詳解】四名學生按任意次序站成一排,所有可能的情況為:,,,,共24種情況,其中和都在邊上共有,4種情況,所以和都在邊上的概率是.故答案為:【點睛】此題考查古典概型,根據(jù)古典概型求概率,關鍵在于準確求出基本事件總數(shù)和某一事件包含的基本事件個數(shù).16、【解析】
求出,然后由模的平方轉化為向量的平方,利用數(shù)量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數(shù)量積的定義與運算律是解題基礎.本題關鍵是用數(shù)量積的定義把模的運算轉化為數(shù)量積的運算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理邊化角,再利用和角的正弦公式化簡即得B的值;(2)先根據(jù)已知求出,再求面積的取值范圍.【詳解】解:(1),即可得,∵∴∵∴∴由,可得;(2)若為銳角三角形,且,由余弦定理可得,由三角形為銳角三角形,可得且解得,可得面積【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角形面積的取值范圍的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.18、(1)(2)在直線上存在定點,使得恒成立,詳見解析【解析】
(1)求出弦中垂線方程,由中垂線和直線相交得圓心坐標,再求出圓半徑,從而得圓標準方程;(2)直線斜率存在時,設方程為,代入圓的方程,得的一元二次方程,同時設交點為由韋達定理得,假設定點存在,設其為,由求得,再驗證所作直線斜率不存在時,點也滿足題意.【詳解】(1)的中點為,∴的垂直平分線的斜率為,∴的垂直平分線的方程為,∴的垂直平分線與直線交點為圓心,則,解得,又.∴圓的方程為.(2)當直線的斜率存在時,設直線的斜率為,則過點的直線方程為,故由,整理得,設,設,則,,,即,當斜率不存在時,成立,∴在直線上存在定點,使得恒成立【點睛】本題考查求圓的標準方程,考查與圓有關的定點問題.求圓的標準方程可先求出圓心坐標和圓的半徑,然后得標準方程,注意圓心一定在弦的中垂線上.定點問題,通常用設而不求思想,即設直線方程與圓方程聯(lián)立消元后得一元二次方程,設直線與圓的交點坐標為,由韋達定理得,然后設定點坐標如本題,再由條件求出,若不能求出說明定點不存在,如能求出值,注意驗證直線斜率不存在時,此定點也滿足題意.19、(1)證明見解析,(2)①②【解析】
(1)計算得到:得證.(2)①計算的通項公式為,利用錯位相減法得到.②將代入集合M,化簡并分離參數(shù)得,確定數(shù)列的單調性,根據(jù)集合中含有個元素得到答案.【詳解】(1),為等比數(shù)列,其中首項,公比為.所以,.(2)①數(shù)列的通項公式為①②①-②化簡后得.②將代入得化簡并分離參數(shù)得,設,則易知由于中含有個元素,所以實數(shù)要小于等于第5大的數(shù),且比第6大的數(shù)大.,,綜上所述.【點睛】本題考查了數(shù)列的證明,數(shù)列的通項公式,錯位相減法,數(shù)列的單調性,綜合性強計算量大,意在考查學生的計算能力和綜合應用能力.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)設點,求得向量的坐標,根據(jù)向量的數(shù)量積的運算,求得,即可求得答案.(Ⅱ)設M點的坐標為,把恒成立問題轉化為恒成立,列出方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防器材智能化改造升級服務合同2篇
- 2024租賃合同簽訂程序及條件
- 2025年拓展訓練合同范本大全:企業(yè)團隊凝聚力提升計劃3篇
- 二零二四年度2024年三人健身產業(yè)合作合同6篇
- 2025年洗車場車輛停放管理及承包合同3篇
- 2025版航空航天專用鋁合金采購合同書4篇
- 二零二四年云服務器租賃與智能運維合同3篇
- 個人汽車租賃合同樣本 2024年版版B版
- 2025年度臨時臨時設施租賃合同標準范本4篇
- 2025年無償使用政府辦公樓場地舉辦會議合同范本3篇
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風險防控PPT
- 充電樁采購安裝投標方案(技術方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
- 春節(jié)期間化工企業(yè)安全生產注意安全生產
- 保險行業(yè)加強清廉文化建設
- Hive數(shù)據(jù)倉庫技術與應用
- 數(shù)字的秘密生活:最有趣的50個數(shù)學故事
評論
0/150
提交評論