湖北省恩施州2025屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第1頁
湖北省恩施州2025屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第2頁
湖北省恩施州2025屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第3頁
湖北省恩施州2025屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第4頁
湖北省恩施州2025屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省恩施州2025屆高一數(shù)學(xué)第二學(xué)期期末達標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的公差,前項和為,則對正整數(shù),下列四個結(jié)論中:(1)成等差數(shù)列,也可能成等比數(shù)列;(2)成等差數(shù)列,但不可能成等比數(shù)列;(3)可能成等比數(shù)列,但不可能成等差數(shù)列;(4)不可能成等比數(shù)列,也不叫能成等差數(shù)列.正確的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)2.已知隨機變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.83.半圓的直徑,為圓心,是半圓上不同于的任意一點,若為半徑上的動點,則的最小值是()A.2 B.0 C.-2 D.44.若且,則的最小值是()A.6 B.12 C.24 D.165.七巧板是古代中國勞動人民的發(fā)明,到了明代基本定型.清陸以湉在《冷廬雜識》中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.如圖,在七巧板拼成的正方形內(nèi)任取一點,則該點取自圖中陰影部分的概率是()A. B.C. D.6.在中,角,,所對的邊分別為,,,若,則的值為()A. B. C. D.7.如下圖,在四棱錐中,平面ABCD,,,,則異面直線PA與BC所成角的余弦值為()A. B. C. D.8.在中,角所對的邊分邊為,已知,則此三角形的解的情況是()A.有一解 B.有兩解 C.無解 D.有解但解的個數(shù)不確定9.經(jīng)過平面外一點和平面內(nèi)一點與平面垂直的平面有()A.1個 B.2個 C.無數(shù)個 D.1個或無數(shù)個10.在平面直角坐標(biāo)系xOy中,直線的傾斜角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是內(nèi)的一點,,,則_______;若,則_______.12.將二進制數(shù)110轉(zhuǎn)化為十進制數(shù)的結(jié)果是_____________.13.若集合,,則集合________.14.若直線l1:ax+3y+1=0與l2:2x+(a+1)y+1=0互相平行,則a的值為________.15.如圖是一個算法的流程圖,則輸出的的值是________.16.若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.據(jù)某市供電公司數(shù)據(jù),2019年1月份市新能源汽車充電量約270萬度,同比2018年增長,為了增強新能源汽車的推廣運用,政府加大了充電樁等基礎(chǔ)設(shè)施的投入.現(xiàn)為了了解該城市充電樁等基礎(chǔ)設(shè)施的使用情況,隨機選取了200個駕駛新能源汽車的司機進行問卷調(diào)查,根據(jù)其滿意度評分值(百分制)按照,,…,分成5組,制成如圖所示的頻率分布直方圖.(1)求圖中的值并估計樣本數(shù)據(jù)的中位數(shù);(2)已知滿意度評分值在內(nèi)的男女司機人數(shù)比為,從中隨機抽取2人進行座談,求2人均為女司機的概率.18.如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)(1)若等邊邊長為,,試寫出關(guān)于的函數(shù)關(guān)系;(2)問為多少時,四邊形的面積最大?這個最大面積為多少?19.某校從高一年級學(xué)生中隨機抽取60名學(xué)生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.(1)根據(jù)頻率分布直方圖,估計眾數(shù)和中位數(shù);(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,求這兩人的分?jǐn)?shù)至少一人落在的概率.20.正項數(shù)列:,滿足:是公差為的等差數(shù)列,是公比為2的等比數(shù)列.(1)若,求數(shù)列的所有項的和;(2)若,求的最大值;(3)是否存在正整數(shù),滿足?若存在,求出的值;若不存在,請說明理由.21.已知數(shù)列的前項和,函數(shù)對任意的都有,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在請求出的取值范圍;若不存在請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:根據(jù)等差數(shù)列的性質(zhì),,,,因此(1)錯誤,(2)正確,由上顯然有,,,,故(3)錯誤,(4)正確.即填(2)(4).考點:等差數(shù)列的前項和,等差數(shù)列與等比數(shù)列的定義.2、B【解析】隨機變量服從正態(tài)分布,所以曲線關(guān)于對稱,且,由,可知,所以,故選B.3、C【解析】

將轉(zhuǎn)化為,利用向量數(shù)量積運算化簡,然后利用基本不等式求得表達式的最小值.【詳解】畫出圖像如下圖所示,,等號在,即為的中點時成立.故選C.【點睛】本小題主要考查平面向量加法運算,考查平面向量的數(shù)量積運算,考查利用基本不等式求最值,屬于中檔題.4、D【解析】試題分析:,當(dāng)且僅當(dāng)時等號成立,所以最小值為16考點:均值不等式求最值5、B【解析】

設(shè)陰影部分正方形的邊長為,計算出七巧板所在正方形的邊長,并計算出兩個正方形的面積,利用幾何概型概率公式可計算出所求事件的概率.【詳解】如圖所示,設(shè)陰影部分正方形的邊長為,則七巧板所在正方形的邊長為,由幾何概型的概率公式可知,在七巧板拼成的正方形內(nèi)任取一點,則該點取自圖中陰影部分的概率,故選:B.【點睛】本題考查幾何概型概率公式計算事件的概率,解題的關(guān)鍵在于弄清楚兩個正方形邊長之間的等量關(guān)系,考查分析問題和計算能力,屬于中等題.6、B【解析】

化簡式子得到,利用正弦定理余弦定理原式等于,代入數(shù)據(jù)得到答案.【詳解】利用正弦定理和余弦定理得到:故選B【點睛】本題考查了正弦定理,余弦定理,三角恒等變換,意在考查學(xué)生的計算能力.7、B【解析】

作出異面直線PA與BC所成角,結(jié)合三角形的知識可求.【詳解】取的中點,連接,如圖,因為,,所以四邊形是平行四邊形,所以;所以或其補角是異面直線PA與BC所成角;設(shè),則,;因為,所以;因為平面ABCD,所以,在三角形中,.故選:B.【點睛】本題主要考查異面直線所成角的求解,作出異面直線所成角,結(jié)合三角形知識可求.側(cè)重考查直觀想象的核心素養(yǎng).8、C【解析】由三角形正弦定理可知無解,所以三角形無解,選C.9、D【解析】

討論平面外一點和平面內(nèi)一點連線,與平面垂直和不垂直兩種情況.【詳解】(1)設(shè)平面為平面,點為平面外一點,點為平面內(nèi)一點,此時,直線垂直底面,過直線的平面有無數(shù)多個與底面垂直;(2)設(shè)平面為平面,點為平面外一點,點為平面內(nèi)一點,此時,直線與底面不垂直,過直線的平面,只有平面垂直底面.綜上,過平面外一點和平面內(nèi)一點與平面垂直的平面有1個或無數(shù)個,故選D.【點睛】借助長方體研究空間中線、面位置關(guān)系問題,能使問題直觀化,降低問題的抽象性.10、B【解析】

設(shè)直線的傾斜角為,,,可得,解得.【詳解】設(shè)直線的傾斜角為,,.,解得.故選:B.【點睛】本題考查直線的傾斜角與斜率之間的關(guān)系、三角函數(shù)求值,考查推理能力與計算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

對式子兩邊平方,再利用向量的數(shù)量積運算即可;式子兩邊分別與向量,進行數(shù)量積運算,得到關(guān)于的方程組,解方程組即可得答案.【詳解】∵,∴;∵,∴解得:,∴.故答案為:;.【點睛】本題考查向量數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意將向量等式轉(zhuǎn)化為數(shù)量關(guān)系的方法.12、6【解析】

將二進制數(shù)從右開始,第一位數(shù)字乘以2的0次冪,第二位數(shù)字乘以2的1次冪,以此類推,進行計算即可.【詳解】,故答案為:6.【點睛】本題考查進位制,解題關(guān)鍵是了解不同進制數(shù)之間的換算法則,屬于基礎(chǔ)題.13、【解析】由題意,得,,則.14、-3【解析】試題分析:由兩直線平行可得:,經(jīng)檢驗可知時兩直線重合,所以.考點:直線平行的判定.15、【解析】由程序框圖,得運行過程如下:;,結(jié)束循環(huán),即輸出的的值是7.16、【解析】

觀察式子特征,直接寫出,即可求出?!驹斀狻坑^察的式子特征,明確各項關(guān)系,以及首末兩項,即可寫出,所以,相比,增加了后兩項,少了第一項,故。【點睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,正確弄清式子特征是解題關(guān)鍵。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),中位數(shù)的估計值為75(2)【解析】

(1)根據(jù)頻率和為1計算,再判斷中位數(shù)落在第三組內(nèi),再計算中位數(shù).(2)該組男司機3人,女司機2人.記男司機為:,,,女司機為:,.排列出所有可能,計算滿足條件的個數(shù),相除得到答案.【詳解】解:(1)根據(jù)頻率和為1得.則.第一組和第二組的頻率和為,則中位數(shù)落在第三組內(nèi).由于第三組的頻率為0.4,所以中位數(shù)的估計值為75.(2)設(shè)事件:隨機抽取2人進行座談,2人均為女司機.的人數(shù)為人.∴該組男司機3人,女司機2人.記男司機為:,,,女司機為:,.5人抽取2人進行座談有:,,,,,,,,,共10個基本事件.其中2人均為女司機的基本事件為.∴.∴隨機抽取2人進行座談,2人均為女司機的概率是.【點睛】本題考查了中位數(shù)和概率的計算,意在考查學(xué)生的計算能力和應(yīng)用能力.18、(1);(2)θ=時,四邊形OACB的面積最大,其最大面積為.【解析】

(1)根據(jù)余弦定理可求得(2)先表示出△ABC的面積及△OAB的面積,進而表示出四邊形OACB的面積,并化簡函數(shù)的解析式為正弦型函數(shù)的形式,再結(jié)合正弦型函數(shù)最值的求法進行求解.【詳解】(1)由余弦定理得則(2)四邊形OACB的面積=△OAB的面積+△ABC的面積則△ABC的面積△OAB的面積?OA?OB?sinθ?2?4?sinθ=4sinθ四邊形OACB的面積4sinθ=sin(θ﹣)∴當(dāng)θ﹣=,即θ=時,四邊形OACB的面積最大,其最大面積為.【點睛】本題考查利用正余弦定理求解面積最值,其中準(zhǔn)確列出面積表達式是關(guān)鍵,考查化簡求值能力,是中檔題19、(1)眾數(shù)為75,中位數(shù)為73.33;(2).【解析】

(1)由頻率分布直方圖能求出a=0.1.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學(xué)生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,基本事件總數(shù),這兩人的分?jǐn)?shù)至少一人落在[50,60)包含的基本事件個數(shù),由此能求出這兩人的分?jǐn)?shù)至少一人落在[50,60)的概率.【詳解】(1)由頻率分布直方圖得:,

解得,

所以眾數(shù)為:,的頻率為,

的頻率為,

中位數(shù)為:.(2)用分層抽樣的方法從的學(xué)生中抽取一個容量為5的樣本,

的頻率為0.1,的頻率為0.15,

中抽到人,中抽取人,從這五人中任選兩人參加補考,

基本事件總數(shù),這兩人的分?jǐn)?shù)至少一人落在包含的基本事件個數(shù),所以這兩人的分?jǐn)?shù)至少一人落在的概率.【點睛】在求解有關(guān)古典概型概率的問題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率20、(1)84;(2)1033;(3)存在,【解析】

(1)由題意可得:,即為:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由題意可得,故有;即,即必是2的整數(shù)冪,要最大,必需最大,,可得出的最大值;(3)由是公差為的等差數(shù)列,是公比為2的等比數(shù)列,可得與,可得k與m的方程,一一驗算k的值可得答案.【詳解】解:(1)由已知,故為:2,4,6,8,10,12,14,16;公比為2,則對應(yīng)的數(shù)為2,4,8,16,從而即為:2,4,6,8,10,12,14,16,8,4;此時(2)是首項為2,公差為2的等差數(shù)列,故,從而,而首項為2,公比為2的等比數(shù)列且,故有;即,即必是2的整數(shù)冪又,要最大,必需最大,,故的最大值為,所以,即的最大值為1033(3)由數(shù)列是公差為的等差數(shù)列知,,而是公比為2的等比數(shù)列,則,故,即,又,,則,即,則,即顯然,則,所以,將,代入驗證知,當(dāng)時,上式右端為8,等式成立,此時,綜上可得:當(dāng)且僅當(dāng)時,存在滿足等式【點睛】本題主要考查等差數(shù)列、等比數(shù)列的通項公式及等差數(shù)列、等比數(shù)列前n項的和,屬于難題,注意靈活運用各公式解題與運算準(zhǔn)確.21、(1),;(2).【解析】分析:(1)利用的關(guān)系,求解;倒序相加求。(2)先用錯位相減求,分離參數(shù),使得對于一切的恒成立,轉(zhuǎn)化為求的最值。詳解:(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論