




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省安徽師大附中2025屆數(shù)學(xué)高一下期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓C的半徑為2,在圓內(nèi)隨機取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.2.《萊因德紙草書》是世界上最古老的數(shù)學(xué)著作之一,書中有一道這樣的題目:把100個面包分給五個人,使每個人所得成等差數(shù)列,最大的三份之和的是最小的兩份之和,則最小的一份的量是()A. B. C. D.3.在中,角、、所對的邊分別為、、,如果,則的形狀是()A.等腰三角形 B.等腰直角三角形C.等腰三角形或直角三角形 D.直角三角形4.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.65.已知角的頂點在坐標原點,始邊與軸正半軸重合,終邊經(jīng)過點,則()A. B. C. D.6.已知函數(shù),其中為整數(shù),若在上有兩個不相等的零點,則的最大值為()A. B. C. D.7.直線l:與圓C:交于A,B兩點,則當(dāng)弦AB最短時直線l的方程為A. B.C. D.8.如圖,在平行六面體中,M,N分別是所在棱的中點,則MN與平面的位置關(guān)系是()A.MN平面B.MN與平面相交C.MN平面D.無法確定MN與平面的位置關(guān)系9.計算的值為().A. B. C. D.10.已知圓錐的底面半徑為,母線與底面所成的角為,則此圓錐的側(cè)面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知球為正四面體的外接球,,過點作球的截面,則截面面積的取值范圍為____________________.12.從集合中隨機選取一個數(shù)記為,從集合中隨機選取一個數(shù)記為,則直線不經(jīng)過第一象限的概率為__________.13.已知內(nèi)接于拋物線,其中O為原點,若此內(nèi)接三角形的垂心恰為拋物線的焦點,則的外接圓方程為_____.14.如圖所示,分別以為圓心,在內(nèi)作半徑為2的三個扇形,在內(nèi)任取一點,如果點落在這三個扇形內(nèi)的概率為,那么圖中陰影部分的面積是____________.15.《九章算術(shù)》中,將底面為長方形且由一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑,平面,,三棱錐的四個頂點都在球的球面上,則球的表面積為__________.16.已知無窮等比數(shù)列的所有項的和為,則首項的取值范圍為_____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某算法框圖如圖所示.(1)求函數(shù)的解析式及的值;(2)若在區(qū)間內(nèi)隨機輸入一個值,求輸出的值小于0的概率.18.已知數(shù)列滿足:.(1)若為等差數(shù)列,求的通項公式;(2)若單調(diào)遞增,求的取值范圍;19.在中,內(nèi)角的對邊分別為,且.(1)求角;(2)若,求的值.20.某校從參加高三模擬考試的學(xué)生中隨機抽取名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:(1)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;(3)用分層抽樣的方法在分數(shù)段為的學(xué)生中抽取一個容量為的樣本,將該樣本看成一個總體,從中任取個,求至多有人在分數(shù)段內(nèi)的概率.21.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當(dāng)時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.2、D【解析】
由題意可得中間部分的為20個面包,設(shè)最小的一份為,公差為,可得到和的方程,即可求解.【詳解】由題意可得中間的那份為20個面包,設(shè)最小的一份為,公差為,由題意可得,解得,故選D.【點睛】本題主要考查了等差數(shù)列的通項公式及其應(yīng)用,其中根據(jù)題意設(shè)最小的一份為,公差為,列出關(guān)于和的方程是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、C【解析】
結(jié)合正弦定理和三角恒等變換及三角函數(shù)的誘導(dǎo)公式化簡即可求得結(jié)果【詳解】利用正弦定理得,化簡得,即,則或,解得或故的形狀是等腰三角形或直角三角形故選:C【點睛】本題考查根據(jù)正弦定理和三角恒等變化,三角函數(shù)的誘導(dǎo)公式化簡求值,屬于中檔題4、D【解析】
根據(jù)公式把模轉(zhuǎn)化為數(shù)量積,展開后再根據(jù)和已知條件計算.【詳解】因為在方向上的投影為,所以,.故選D.【點睛】本題主要考查向量模有關(guān)的計算,常用公式有,.5、B【解析】
先由角的終邊過點,求出,再由二倍角公式,即可得出結(jié)果.【詳解】因為角的頂點在坐標原點,始邊與軸正半軸重合,終邊經(jīng)過點,所以,因此.故選B【點睛】本題主要考查三角函數(shù)的定義,以及二倍角公式,熟記三角函數(shù)的定義與二倍角公式即可,屬于??碱}型.6、A【解析】
利用一元二次方程根的分布的充要條件得到關(guān)于的不等式,再由為整數(shù),可得當(dāng)取最小時,取最大,從而求得答案.【詳解】∵在上有兩個不相等的零點,∴∵,∴當(dāng)取最小時,取最大,∵兩個零點的乘積小于1,∴,∵為整數(shù),令時,,滿足.故選:A.【點睛】本題考查一元二次函數(shù)的零點,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意為整數(shù)的應(yīng)用.7、A【解析】
先求出直線經(jīng)過的定點,再求出弦AB最短時直線l的方程.【詳解】由題得,所以直線l過定點P.當(dāng)CP⊥l時,弦AB最短.由題得,所以.所以直線l的方程為.故選:A【點睛】本題主要考查直線過定點問題,考查直線方程的求法,考查直線和圓的位置關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.8、C【解析】
取的中點,連結(jié),可證明平面平面,由于平面,可知平面.【詳解】取的中點,連結(jié),顯然,因為平面,平面,所以平面,平面,又,故平面平面,又因為平面,所以平面.故選C.【點睛】本題考查了直線與平面的位置關(guān)系,考查了線面平行、面面平行的證明,屬于基礎(chǔ)題.9、D【解析】
利用誘導(dǎo)公式以及特殊角的三角函數(shù)值可求出結(jié)果.【詳解】由誘導(dǎo)公式可得,故選D.【點睛】本題考查誘導(dǎo)公式求值,解題時要熟練利用“奇變偶不變,符號看象限”基本原則加以理解,考查計算能力,屬于基礎(chǔ)題.10、B【解析】
首先計算出母線長,再利用圓錐的側(cè)面積(其中為底面圓的半徑,為母線長),即可得到答案.【詳解】由于圓錐的底面半徑,母線與底面所成的角為,所以母線長,故圓錐的側(cè)面積;故答案選B【點睛】本題考查圓錐母線和側(cè)面積的計算,解題關(guān)鍵是熟練掌握圓錐的側(cè)面積的計算公式,即(其中為底面圓的半徑,為母線長),屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在平面中,過圓內(nèi)一點的弦長何時最長,何時最短,類比在空間中,過球內(nèi)一點的球的大圓面積最大,與此大圓垂直的截面小圓面積最小.利用正四面體的性質(zhì)及球的性質(zhì)求正四面體外接球的半徑、小圓半徑,確定答案.【詳解】因為正四面體棱長為AB=3,所以正四面體外接球半徑R=.由球的性質(zhì),當(dāng)過E及球心O時的截面為球的大圓,面積最大,最大面積為;當(dāng)過E的截面與EO垂直時面積最小,取△BCD的中心,因為為正四面體,所以平面BCD,O在上,,所以,在三角形中,由,,,,由余弦定理在直角三角形中所以過E且與EO垂直的截面圓的半徑r為,截面面積為.所以所求截面面積的范圍是.【點睛】本題考查空間想象能力,邏輯推理能力,空間組合體的關(guān)系,正四面體、球的性質(zhì),考查計算能力,屬于難題.12、【解析】
首先求出試驗發(fā)生包含的事件的取值所有可能的結(jié)果,滿足條件事件直線不經(jīng)過第一象限,符合條件的有種結(jié)果,根據(jù)古典概型概率公式得到結(jié)果.【詳解】試驗發(fā)生包含的事件,,得到的取值所有可能的結(jié)果有:共種結(jié)果,由得,當(dāng)時,直線不經(jīng)過第一象限,符合條件的有種結(jié)果,所以直線不經(jīng)過第一象限的概率.故答案為:【點睛】本題是一道古典概型題目,考查了古典概型概率公式,解題的關(guān)鍵是求出列舉基本事件,屬于基礎(chǔ)題.13、【解析】
由拋物線的對稱性知A、B關(guān)于x軸對稱,設(shè)出它們的坐標,利用三角形的垂心的性質(zhì),結(jié)合斜率之積等于﹣1即可求得直線MN的方程,即可求出點C的坐標,問題得以解決.【詳解】∵拋物線關(guān)于x軸對稱,內(nèi)接三角形的垂心恰為拋物線的焦點,三邊上的高過焦點,∴另兩個頂點A,B關(guān)于x軸對稱,即△ABO是等腰三角形,作AO的中垂線MN,交x軸與C點,而Ox是AB的中垂線,故C點即為△ABO的外接圓的圓心,OC是外接圓的半徑,設(shè)A(x1,2),B(x1,﹣2),連接BF,則BF⊥AO,∵kBF,kAO,∴kBF?kAO=?1,整理,得x1(x1﹣5)=1,則x1=5,(x1=1不合題意,舍去),∵AO的中點為(,),且MN∥BF,∴直線MN的方程為y(x),當(dāng)x1=5代入得2x+4y﹣91,∵C是MN與x軸的交點,∴C(,1),而△ABO的外接圓的半徑OC,于是得到三角形外接圓方程為(x)2+y2=()2,△OAB的外接圓方程為:x2﹣9x+y2=1,故答案為x2﹣9x+y2=1.【點睛】本題考查拋物線的簡單性質(zhì),考查了兩直線垂直與斜率的關(guān)系,是中檔題14、【解析】
先求出三塊扇形的面積,再由概率計算公式求出的面積,進而求出陰影部分的面積.【詳解】∵,∴三塊扇形的面積為:,設(shè)的面積為,∵在內(nèi)任取一點,點落在這三個扇形內(nèi)的概率為,,∴圖中陰影部分的面積為:,故答案為:.【點睛】本題主要考查幾何概型的應(yīng)用,屬于幾何概型中的面積問題,難度不大.15、【解析】
由題意得該四面體的四個面都為直角三角形,且平面,可得,.因為為直角三角形,可得,所以,因此,結(jié)合幾何關(guān)系,可求得外接球的半徑,,代入公式即可求球的表面積.【詳解】本題主要考查空間幾何體.由題意得該四面體的四個面都為直角三角形,且平面,,,,.因為為直角三角形,因此或(舍).所以只可能是,此時,因此,所以平面所在小圓的半徑即為,又因為,所以外接球的半徑,所以球的表面積為.【點睛】本題考查三棱錐的外接球問題,難點在于確定BC的長,即得到,再結(jié)合幾何性質(zhì)即可求解,考查學(xué)生空間想象能力,邏輯推理能力,計算能力,屬中檔題.16、【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關(guān)系式,由此可求出實數(shù)的取值范圍.【詳解】設(shè)等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項的和為,則,.當(dāng)時,則,此時,;當(dāng)時,則,此時,.因此,首項的取值范圍是.故答案為:.【點睛】本題考查利用無窮等比數(shù)列的和求首項的取值范圍,解題的關(guān)鍵就是結(jié)合題意得出首項和公比的關(guān)系式,利用不等式的性質(zhì)或函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)從程序框圖可提煉出分段函數(shù)的函數(shù)表達式,從而計算得到的值;(2)此題為幾何概型,分類討論得到滿足條件下的函數(shù)x值,從而求得結(jié)果.【詳解】(1)由算法框圖得:當(dāng)時,,當(dāng)時,,當(dāng)時,,,(2)當(dāng)時,,當(dāng)時,由得故所求概率為【點睛】本題主要考查分段函數(shù)的應(yīng)用,算法框圖的理解,意在考查學(xué)生分析問題的能力.18、(1)(2)【解析】
(1)設(shè)出的通項公式,根據(jù)計算出對應(yīng)的首項和公差,即可求解出通項公式;(2)根據(jù)條件得到,得到的奇數(shù)項成等差數(shù)列,的偶數(shù)項也成等差數(shù)列,根據(jù)單調(diào)遞增列出關(guān)于的不等式,求解出范圍即可.【詳解】(1)設(shè),所以,所以,所以,所以;(2)因為,所以,所以,又因為,所以,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,因為單調(diào)遞增,所以,所以,所以.【點睛】本題考查等差數(shù)列的基本量求解以及根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,難度一般.(1)已知數(shù)列的類型和數(shù)列的遞推公式求解數(shù)列通項公式時,可采用設(shè)出數(shù)列通項公式的形式,然后根據(jù)遞推關(guān)系求解出數(shù)列通項公式中的基本量;(2)數(shù)列的單調(diào)性可通過與的大小關(guān)系來判斷.19、(1)(2)【解析】
(1)根據(jù)與正弦定理化簡求解即可.(2)利用余弦定理以及(1)中所得的化簡求解即可.【詳解】解:(1),由正弦定理可得,即得,為三角形的內(nèi)角,.(2),由余弦定理,即.解得.【點睛】本題主要考查了正余弦定理求解三角形的問題.需要根據(jù)題意用正弦定理邊化角以及選用合適的余弦定理等.屬于基礎(chǔ)題.20、(1)0.3,直方圖見解析;(2)121;(3).【解析】
(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分數(shù)在內(nèi)的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,將中點值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計算、分數(shù)段的人數(shù),然后按照比例進行抽取,設(shè)從樣本中任取2人,至多有1人在分數(shù)段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個數(shù)求出題目比值即可.【詳解】(1)分數(shù)在[120,130)內(nèi)的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3,,補全后的直方圖如下:(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.(3)由題意,[110,120)分數(shù)段的人數(shù)為:60×0.15=9人,[120,130)分數(shù)段的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 計算機軟件測試的團隊協(xié)作模式試題及答案
- 教育政策與社會穩(wěn)定性的關(guān)系試題及答案
- 軟件設(shè)計師備考復(fù)習(xí)資料試題及答案
- 有效的公共政策實施策略試題及答案
- 突出重點的軟件設(shè)計師考試試題及答案
- 機電工程考試內(nèi)容概述及試題答案
- 網(wǎng)絡(luò)流量控制試題及答案
- 西方國家發(fā)展中的政治沖突試題及答案
- 項目管理師考試簡易科目及試題答案
- 軟考網(wǎng)絡(luò)工程師思考方式試題及答案
- 2024年全國職業(yè)院校技能大賽中職組(母嬰照護賽項)考試題庫(含答案)
- 服裝行業(yè)跨境電商研究報告
- 第二單元探索寓言王國之趣復(fù)習(xí)課課件語文三年級下冊
- 2025屆中考生物一輪復(fù)習(xí)課堂精講 思維導(dǎo)圖-人體生理與健康
- 烹飪原料知識題庫(附參考答案)
- 【MOOC】航空發(fā)動機故障診斷-西北工業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 【MOOC】3D工程圖學(xué)應(yīng)用與提高-華中科技大學(xué) 中國大學(xué)慕課MOOC答案
- 開顱手術(shù)前后的護理
- 智慧用電系統(tǒng)及智慧用電智能監(jiān)控技術(shù)的應(yīng)用及推廣實施方案
- 文物安全防護工程實施工作指南(試行)
- PVC膜生產(chǎn)中的關(guān)鍵技術(shù)
評論
0/150
提交評論